CONSEIL INTERNATIONAL DE RECHERCHES
UNION GÉODÉSIQUE ET GÉOPHYSIQUE INTERNATIONALE

SECTION D'OCÉANOGRAPHIE
Siège du Bureau central — Stra (Venise)

BULLETIN N. 11

Réunion plénière de la Section
(Prague, Septembre 1927)

VENEZIA
PREMIATE OFFICINE GRAFICHE CARLO FERRARI
1928 Anno VI. E. F.
CONSEIL INTERNATIONAL DE RECHERCHES
UNION GÉODÉSIQUE ET GÉOPHYSIQUE INTERNATIONALE

SECTION D'OCÉANOGRAPHIE
Siège du Bureau central — Stra (Venise)

BULLETIN N. 11

Réunion plénière de la Section
(Prague, Septembre 1927)

VENEZIA
PREMIATE OFFICINE GRAPICHE CARLO FERRARI
1928 Anno VI. n. F.
INDEX

Ordre du jour de la Réunion plénière de la Section	Pag. 5
Liste des Délégués	8
Première Séance plénière de la Section (2 septembre)	9
Allocation du Président	11
Rapport du Sекrétaire	14
Deuxième Séance plénière de la Section (3 septembre)	24
Commission des Marées	25
Commission de l'Atlantique	28
Commission du Pacifique	33
Commission de la Méditerranée	35
Vocabulaire oceanographique	37
Manuel international pour les recherches scientifiques à la mer	38
Encyclopédie oceanographique	39
Commission permanente pour l'unification des méthodes et des instruments de l'Oceanographie	41
Résumé des Comptes jusqu'au 31 Mars 1927. — Rapport financier du Secrétaire	45
Résolutions prises par la Section	49

ANNEXE I. — Lambert. — THE IMPORTANCE FROM A GEOPHYSICAL POINT OF VIEW OF A KNOWLEDGE OF THE TIDES IN THE OPEN SEA

Introduction	52
Earth Tides	52
Tidal friction	54
A possible method of studying Tides at sea	59

ANNEXE II. — Roudman. — THE DETERMINATION OF EARTH-TIDES BY MEANS OF WATER-TIDES IN NARROW SEAS

| 61 |

ANNEXE III. — SONDAGE PAR CHOCS ET DÉTONATIONS

| 65 |

ANNEXE IV. — SONDAGE PAR ULTRA-SONS

| 71 |

ANNEXE V. — TIDAL COMMITTEE

| 78 |
La Réunion plénière de la Section d’Océanographie a eu lieu à l’occasion de l’Assemblée générale de l’Union géodésique et géophysique, qui s’est réunie du 1er au 7 septembre, à Prague, dans le Palais du Parlement.

**

L’Ordre du Jour distribué par la Présidence de la Section aux Comités nationaux des différents pays, est le suivant :

I. ORGANISATION

1) Communications du Président.
2) Rapport administratif et financier du Secrétaire.
3) Constitution de Commissions.
4) Finances et budget de la Section.
5) Elections.

II. RAPPORTS DES COMMISSIONS

1) Rapport de la Commission de l’Océan Atlantique.
2) Rapport de la Commission de l’Océan Pacifique.
3) Rapport de la Commission de la Méditerranée.
4) Rapport de la Commission des Marées.
5) Rapport sur la préparation et la publication du Vocabulaire International d’Océanographie.
6) Rapport sur la préparation et la publication du Manuel International d’Océanographie.
III. DISCUSSION DE PROBLèMES SCIENTIFIQUES

1) La question de la variation du niveau moyen de la mer au point de vue géophysique.
2) Instruments et méthodes pour l’observation et l’étude des marées terrestres.
3) Moyens d’échange parmi les différentes Nations adhérentes du matériel sur lequel sont basées les recherches scientifiques.
4) Emploi de méthodes acoustiques dans l’océanographie, spécialement au sujet de la batométrie et de la navigation. Nécessité de mieux connaître les conditions qui affectent la vitesse du son — température, salinité et pression, etc.
5) Emploi de méthodes acoustiques et radio dans la navigation comme moyen pour mieux connaître les courants de la mer.
6) Progrès dans les différents problèmes de l’océanographie physique, comme (1) la distribution de l’anomalie de la pesanteur sur les océans; (2) les marées dans la haute mer; (3) l’influence des différences de densité, salinité et température sur les courants océanographiques abyssaux, etc.
7) Étude (c) des problèmes de la chimie de la mer, telles que des substances en solution en quantités minimales dans l’eau de mer et progrès récents de la procédure analytique; (d) des problèmes dans la chimie physique de l’eau de mer; (e) la chimie de substances d’origine organique associée avec les dépôts du fond de la mer, y compris la procédure analytique.
8) L’étude des dépôts récents du fond de la mer outre œux inclus sous la rubrique 7 (c).
9) L’étude de (a) la photosynthèse dans les organismes maritimes; (b) de la bactériologie de la mer; (c) des quantités d’organismes minimes, planktoniques et benthoniques disponibles comme nourriture pour les plus grands organismes; (d) œufs de poisson pelagiques.
10) Communications spéciales et rapports sur le travail personnel des océanographes des différents pays.
11) Rapports sur des méthodes nouvelles de travail océano graphique, nécessitant une coopération internationale pour être accomplis.
IV. ORGANISATION DE RECHERCHES OCÉANOGRAPHIQUES INTERNATIONALES.

1) Rapport de la Commission nommée pour proposer les instruments et les méthodes de recherche à adopter comme instruments et méthodes étaçons dans les recherches océanographiques.
2) Propositions pour l'organisation et la conduite de campagnes océanographiques.

V. BIBLIOGRAPHIE

1) Classification des arguments océanographiques pour la Bibliographie.
LISTE DES DÉLÉGUÉS

Argentina — prof. Adolph I. Holmberg
Dansmark — prof. Martin Knudsen
Espagne — prof. Odon de Buen
— prof. Rafael de Buen
— prof. José Giral
Etats-Unis — A. B. Cook
— Harry Fielding Reid
Finlande — Rolf Witting
France — Eng. Fichet
— Ed. Le Danois
Grande Bretagne — Lord Edward Gleichen
— Donald F. Matthews
— J. Proudman
Italie — prof. Giovanni Magrini
— com. Renzo Manclini
— prof. Mario Picotti
— prof. Francesco Vercelli
Japon — Kwanji Suda
— M. Tanakadate
Mexique — Pedro C. Sanchez
Netherlands — E. van Everdingen
Pérou — Ernesto Caballero y Lastres
Suède — Axel Wallen
I.

PREMIÈRE SÉANCE PLÉNIÈRE DE LA SECTION
(2 septembre)

La première Séance plénière est ouverte à 15 heures : Président M. Odon de Buen, Secrétaire M. Magrini.

Sont présents les Délégués suivants des Pays suivants :

Danemark — M. Knudsen
Espagne — M. Odon de Buen
 M. Raphael de Buen
 M. Torroja
États-Unis — M. Cook
 M. Fielding Reid
Finlande — M. Witting
France — M. Fichot
 M. Le Danois
Grande Bretagne — M. Gleichen
 M. Proudman
Italie — M. Magrini
 M. Mancini
 M. Picotti
 M. Vercelli
Pérou — M. Caballero y Lastres
Suede — M. Wallen.

Assistent à la séance, en qualité d'invités :

M. le Prof. Gravelius (allemand)
et M. le Prof. Arctowski (russe).

Le Président communique les noms des membres de la Section qui se sont excusés de ne pouvoir assister à la Réunion de Prague :

M. Lamb, président de la Commission des Marées
M. Joubin, président de la Commission de l'Atlantique
M. Volterra, président de la Commission de la Méditerranée
M. Littlehales, président de la Commission du Pacifique
M. Schmidt, délégué danois.
Le Président communique qu'à la suite de l'autorisation donnée aux Sections par l'Assemblée Générale de l'Union, de se réunir avant la cérémonie officielle d'ouverture de l'Assemblée, la Section, en considération de son ordre du jour très chargé, et se basant sur ce qu'avaient fait les autres Sections, décida de commencer ses travaux quelques jours avant l'ouverture officielle, et la communication suivante fut distribuée aux divers Comités nationaux :

Ordre des Séances prévues pour la Réunion de Prague

Mercredi
31 Août à 16 h - Réunion préliminaire de la Présidence.

Jeudi
1 Sept. à 16 h - 1ère Séance plénière de la Section.
Nomination des Commissions.

Vendredi
2 id. à 10 h - Réunion de la Commission de la Mer Méditerranée.

Samedi
3 id. à 16 h - Réunion de la Commission de l'Océan Atlantique.

Lundi
5 id. à 10 h - Réunion de la Commission de l'Océan Pacifique.

Mardi
6 id. à 10 h - Réunion de la Commission des Marées.

Jeudi
8 id. à 10 h - Réunion des Commissions spéciales.

Vendredi
9 id. à 10 h - Réunion de la Présidence.

id.
id. à 15 h - 2ème Séance plénière de la Section.

Des Séances communes avec les Sections de Géodésie, de Sismologie et, éventuellement, de Météorologie sont prévues.

On s'aperçoit pourtant que ce système n'est pas pratique, parcequ'il est difficile pour plusieurs délégués, d'être présent avant l'ouverture officielle des travaux de l'Assemblée. Par conséquent la première Séance plénière — conformément à l'avis affiché au tableau indicateur des réunions, placé dans le Bureau, pour les communications aux délégués — a eu lieu aujourd'hui, c'est-à-dire après l'ouverture officielle de l'Assemblée, afin de laisser à tous les délégués le temps d'arriver.
ALLOCATION DU PRÉSIDENT

Le Président prononce ensuite l'allocution suivante :

Messieurs,

En ouvrant la première Session de notre troisième Assemblée plénière je m'acquito de l'agréable devoir de saluer avec effusion les représentants qui, pour la première fois, prennent part à notre besogne. Tout particulièrement je salue les délégués de la République Argentine et du Pérou, pays desquels nous espérons une active coopération dans l'étude des côtes américaines de l'Atlantique et du Pacifique.

Nous constatons avec tristesse les pertes sensibles, irréparables, de collègues éminents disparus depuis l'Assemblée de Madrid, pour rendre leur tribut à la loi terrible de l'incessante renovation, à laquelle doit se soumettre l'humanité comme tous les organismes de la Nature :

L'Amiral Parry, qui fut notre Vice-Président et qui laisse parmi nous des sentiments de respect et d'affection impérissables ; l'Amiral Nieuparth qui, comme représentant du Portugal, fut Vice-Président de la Commission de l'Atlantique ; le Colonel Chaves, collaborateur actif du Prince Albert de Monaco, à qui la Géodésie et la Géophysique doivent des travaux incessants réalisés dans une zone aussi stratégique comme les Azores ; Buchanan, l'unique survivant de la glorieuse phalange du "Challenger" ; Dreschel, qui pendant tant d'années fut le Secrétaire du Conseil international permanent pour l'exploration de la mer et dont nous gardons le meilleur souvenir de notre Assemblée de Madrid. Et, quoiqu'il ne collabora pas dans notre Section avec son grand prestige, nous devons rendre l'hommage à Mersa, le savant directeur de l'admirable campagne du "Météor", qui mourut en pleine, fatigante et incomparable activité. La Biologie Marine a perdu des savants du prestige de G. O. Sars, Pruvot, Grassi, Robert.

Pour tous, et pour les autres que j'aurais pu oublier dans cette triste énumération, l'expression de notre douleur, le tribut de notre souvenir impérissable.

Dans l'intervalle de l'Assemblée de Madrid à celle qui va commencer, le Bureau de la Section et spécialement son Secrétaire, on travaillé sans cesse dans l'accomplissement de vos résolu-
tions. Et quoique notre actif Secrétaire, le Prof. Magrini, va vous donner en suite le compte détaillé de ces travaux, je dois appeler votre attention sur quelques uns dans lesquels intervint la Présidence avec sa meilleure volonté, mais avec un succès varié.

Dans le Bureau central de Stra (Venise) le Comité exécutif de la Section, à l’assistance presque plénière, se réunit dans l’été de 1926. Avec le Président et le Secrétaire prirent part dans les délibérations :

M. Maurice, Président du Conseil international permanent pour l’exploration de la mer,

M. le Prof. Volterra, Président de la Commission de la Méditerranée,

M. le Prof. Joubin, Président de la Commission de l’Atlantique.

La réunion eut lieu dans la bibliothèque, ample et déjà bien assortie, de la Section, installée avec le Bureau dans la maison du Professeur Magrini, qui se trouve près du splendide Parc de l’historique Villa Pisani. L’installation et le travail que celle-ci comporte ont merité des félicitations chaleureuses pour notre Secrétaire.

Le Comité exécutif, en examinant la situation des travaux océanographiques mondiaux, se réjouit de l’activité et de l’admirable organisation de l’Océanographie aux États-Unis d’Amérique, et de la constitution de la Commission du Pacifique, qui apporte à notre Section des éléments de valeur inapprêtable.

Dans la réunion de Stra fut proposée, acceptée et étudiée l’idée de célébrer une grande réunion d’experts de tous les pays pour traiter de l’unification des méthodes, et des procédés dans les croisières et dans les travaux océanographiques, comme moyen le plus sûr pour comparer facilement les résultats et pour arriver à des conclusions de caractère général.

Fut également proposée et acceptée l’idée d’organiser une Exposition internationale des instruments employés en Océanographie.

Le Président qui vous adresse la parole, assista comme délégue du Gouvernement espagnol à l’Assemblée tenue à Monaco en octobre et novembre derniers par le Bureau hydrographique international. Grâce à ses démarches, secondées par notre éminent collègue, M. Fichot, on inséra dans les Statuts de Bureau hydrographique international d’inviter aux assemblées que celui-ci tiendra le Président et Secrétaire de notre Section, consolidant ainsi les liens d’union qu’avait établis notre regreté Vice-Président, l’Amiral
Parry, qui en même temps fut Président du Bureau hydrographique international de Monaco.

Je dois vous communiquer que le Gouvernement espagnol m’avait chargé d’offrir généreusement au Bureau hydrographique un édifice dans lequel il pourra s’installer commodément, avec tous ses services, gratuitement, dans la ville de Malaga, d’un climat doux et située près de l’Atlantique; installation qui permettrait au Bureau hydrographique de développer amplement les buts pour lesquels il fut créé.

J’ai la satisfaction de notifier à cette Section que le Gouvernement espagnol construira un grand édifice, avec trois pavillons spacieux pour l’Océanographie physique et chimique, pour la Biologie marine et pour l’Hydrographie et qu’en outre, il a l’intention d’offrir une généreuse hospitalité aux savants et aux travailleurs des grandes Associations internationales dont la tâche est l’étude de la mer.

Le Gouvernement de mon pays nourrit le légitime espoir qu’à son appel répondront toutes les brillantes Républiques de l’Amérique dont la langue est l’espagnol.

Pour compléter notre organisation, et d’accord avec le vote de la dernière réunion à Bruxelles du Conseil International des Recherches, cette Présidence a sollicité, de manière officieuse et particulière, le concours de savants océanographes allemands en visitant la "Deutsche Stewarte", de Hambourg et en faisant des démarches auprès des organismes officiels de Berlin, et, quoique ses efforts n’aient pas été complètement couronnés de succès, il faut espérer que dans une prochaine Assemblée nous pourrons réunir la grande famille des investigateurs de la mer du monde entier dans notre Section d’Océanographie.

Le plus ample et glorieux horizon s’offre à notre Section; d’abord il faut s’organiser, unifier les méthodes et procédés, et offrir ensuite notre coopération aux Sections-soeurs de l’Union Géodésique et géophysique. L’Océanographie doit être la base obligatoire des travaux les plus importants de Géodésie et Géophysique, puisque l’océan couvre la plus grande partie de notre planète et ses eaux imprègnent la terre, l’atmosphère et les êtres vivants, en y exerçant une très grande influence. Les travaux se limitant à la terre seront toujours incomplets et souvent mesquins. Les Commissions mixtes de Géodésie avec la Météorologie, l’Electricité et le Magnétisme, la
Seismologie et Vulcanologie s'imposent. Quelques unes sont déjà formées, d'autres doivent se créer.

Dans le travail que j'ai publié dans *Scientia* (Février 1925) concernant l' *Oceanographie dans la vie internationale* et qui a mérité l'honneur d'être traduit dans différentes langues, j'ai dit :

"L'Oceanographie doit être à l'avenir le champ commun de notre travail ; elle sera la Science qui complète et agglutine toutes les conclusions de la Géodésie et de la Géophysique, limitées jusqu'à présent presque exclusivement aux continents. Moi je rêve de cet Empire de l'Oceanographie, puisque les océans ont été tout dans le passé de la terre et commandent encore aujourd'hui.

"Et l'Océan est la propriété de tous et de personne ; il appartient aux pensées les plus osées, aux esprits scientifiques les plus aventuriers, au plus dur travail humain et au mieux organisé, aux peuples les plus civilisés et les plus puissants ; il constituera le champ général de tous les efforts de la Science, son exploration doit être collective et son exploitation réglée selon des accords communs. Il nous réserve encore des révélations scientifiques transcendantes et des richesses matérielles inexplorées. L'Oceanographie est donc une Science internationale et ne peut être autre chose."

(Applaudissements).

**

Le Président donne ensuite la parole au Secrétaire Prof. Magrini pour le lecture de son rapport.

**

RAPPORT DU SECRÉTAIRE

Dans la réunion plénière de Madrid en 1924, les buts que la Section doit se proposer, du moins dans ce premier période d'organisation, ont été bien précisés.

Ces buts comprennent essentiellement la coordination de l'activité des différents pays et surtout des différentes Commissions et Instituts internationaux qui s'occupent de l'étude de la mer. C'est, dans cette direction, qu'a été dirigée l'activité de notre Bureau central.
Notre tâche bien définie est donc celle d’obtenir le plus d’entraînement possible entre toutes les organisations et instituts des différents pays s’occupant de recherches océanographiques, et d’obtenir que les grandes organisations existant déjà, et celles qui sont en train de se constituer, collaborent ensemble et emploient autant que possible dans leurs recherches des méthodes et instruments comparables.

Ceci est certainement le but le plus important qu’il faut nous proposer pour arriver à de bons résultats.

Comme on le sait, les grandes organisations internationales s’occupant de l’étude de la mer sont les suivantes :

1. La Commission internationale de la Méditerranée ;
2. La Commission internationale de l’Atlantique ;
3. La Commission internationale du Pacifique ;
4. Le Conseil international pour l’exploration de la Mer de Copenhague ;
5. Le Bureau Hydrographique international.

Ces grandes organisations internationales sont constituées à la base d’accords diplomatiques, entre les différents pays intéressés et elles ont leurs propres statuts, un propre bilan, formé par les contributions des différents pays adhérents, qui s’engagent pour un certain nombre d’années. Elles doivent, généralement, s’occuper de questions pratiques spéciales, relatives à la navigation et à la pêche, et par conséquent doivent aussi s’occuper des problèmes généraux de l’océanographie.

A ces cinq grandes organisations, il faut ajouter la Commission internationale des Marées, émanation directe de notre Section, qui doit s’occuper des problèmes des marées, à tous les points de vue. Quelques-uns de ces organismes sont déjà régulièrement constitués et fonctionnent activement, tels la Commission de la Méditerranée, le Conseil international pour l’exploration de la mer de Copenhague et le Bureau Hydrographique international. Les autres organisations sont en train de se constituer et de s’organiser.

Nous pouvons bien dire qu’en peu d’années, lorsque toutes ces Commissions seront en pleine activité efficace, l'Océanographie disposera d’une organisation admirable qui permettra d’envisager avec un effort mutuel et vigoureux, les problèmes difficiles et complexes de la mer qui sont encore si loin de leur solution.
Une réunion importante du Comité exécutif de notre Section a eu lieu à Stras au mois de juillet 1926 et l'on a envisagé le problème de l'unification des méthodes et des instruments, qui est aujourd'hui le plus important pour nous. La solution est certainement très difficile, il suffit de penser qu'on a très souvent à lutter contre des susceptibilités personnelles.

Tous les observateurs ont une grande difficulté, ce qui, du reste, est tout à fait humain, à abandonner les méthodes et les instruments dont ils se sont servis, et qui, souvent, furent proposés par eux-mêmes, pour en adopter de nouveaux.

On a trouvé que le système le plus pratique pour arriver à un résultat, est celui de réunir ensemble les instruments employés dans les différents pays, ainsi que le matériel d'illustration qui permet de se former une idée claire des différentes méthodes, et de les soumettre à un examen minutieux pour les comparer entre eux. Dans ce but, on a pensé à organiser une Exposition internationale et de réunir, en même temps, des techniciens qualifiés qui, en premier lieu, auraient à précliser les questions instrumentales et à nommer des rapporteurs sur les différents instruments et méthodes. En second lieu, ils auraient à examiner ces rapports et à décider sur les instruments et les méthodes à conseiller. Nous espérons que s'il n'est pas possible d'obtenir immédiatement l'adoption d'instruments égaux, il sera du moins possible d'obtenir, graduellement, l'adoption d'instruments et de méthodes comparables.

On avait pensé d'abord à organiser une telle Exposition à l'occasion de la présente Assemblée générale, et dans ce but on avait expédié à tous les Instituts intéressés et à beaucoup de constructeurs d'instruments la circulaire que voici.

Monsieur,

Stras, mars 1927

La Section d'Océanographie organisera, à l'occasion de l'Assemblée générale de l'Union géodésique et géophysique du Conseil international de Recherches, qui aura lieu à Prague l'automne prochain, du 4 au 11 septembre, une Exposition des Instruments employés pour les recherches océanographiques et hydrographiques. Un des buts de cette Exposition sera aussi celui de permettre à une Commission d'experts de proposer les Instruments et les Méthodes "standard" à employer pour les recherches océanographiques internationales.
L'importance de ce but est bien évidente et, certainement, tous les Bureaux intéressés aux recherches océanographiques et tous les constructeurs spécialisés, voudront envoyer à l'Exposition les instruments qu'ils jugeont les meilleurs et qu'ils croient devoir proposer.

Les Instruments et les Méthodes d'emploi seront réunis en huit catégories:

1) Instruments et Méthodes hydrographiques pour la détermination et la représentation du relief sous-marin.

2) Instruments et Méthodes physiques: Thermique-Acoustique-Optique.

3) Instruments et Méthodes pour l'étude des Marées océaniques et terrestres.

4) Instruments et Méthodes pour l'observation et l'étude des Vagues et des Courants.

5) Instruments et Méthodes chimiques. Prise des échantillons d'eau, gaz, etc.

6) Instruments et Méthodes pour l'étude lithologique des fonds marins.

7) Instruments et Méthodes pour les recherches océanographiques subsidiaires (Météorologie marine, etc.).

8) Instruments et Méthodes pour l'étude du Plankton.

On acceptera avec plaisir des photographies, dessins, et modèles pour illustrer:

9) Navires Hydrographiques et Océanographiques.

10) Instituts Hydrographiques et Océanographiques.

Nous vous saurons gré de bien vouloir nous communiquer au plus tôt si vous désirez participer à l'Exposition, qui aura lieu dans les Salles de l'Institut de Géographie de l'Université de Prague.

Nous vous prions aussi de vouloir, si possible, nous communiquer quels seront les instruments et les objets que vous désirez exposer.

Les modalités relatives à l'expédition vous seront communiquées au plus tôt et nous espérons obtenir l'exemption des frais de douane pour les objets à exposer.

Nous espérons que vous voudrez participer activement à cette importante manifestation de la science océanographique et nous vous prions de bien vouloir agréer l'expression de nos sentiments les plus distingués.

Le Secrétaire

Giovanni Magrini

Le Président

Odon de Buen
Les adhésions furent très nombreuses, surtout de la part des constructeurs, mais on a vu, tout de suite, que le temps disponible était trop limité et que beaucoup qui auraient participé volontiers, a cette Exposition, ont dû y renoncer, n'ayant pas le temps suffisant pour une bonne préparation.

On a alors décidé de renvoyer l’Exposition, et on a pensé de la tenir à la plus proche réunion plénière d’une des grandes Commissions océanographiques et précisément au mois de mai 1928, à Copenhague, à l’occasion de la réunion du Conseil international pour l’exploration de la mer.

Mais il on a observé qu’alors, seulement un nombre limité de techniciens probablement visiteront l’Exposition, tandis qu’il serait à souhaiter qu’une Exposition de ce genre, soit visitée par le plus grand nombre possible d’intéressés.

Pour cette raison on pense à l’organiser plutôt à l’occasion d’une grande Exposition internationale et de convoquer, si possible, en même temps un Congrès International d’Océanographie et d’Hydrographie.

La Section devrait maintenant prendre une décision à ce sujet, c’est à dire si elle juge opportun que l’Exposition ait lieu à l’occasion d’une grande Exposition internationale et s’il faut en même temps convoquer un Congrès international d’Océanographie.

Dans le cas où la Section prendrait une décision affirmative, l’Exposition pourrait se tenir à l’occasion de la grande Exposition hispano-américaine qui sera inaugurée en automne 1928 à Séville et, par l’intermédiaire de notre président, une demande officielle à ce propos pourrait être adressée au Gouvernement Espagnol et au Comité de l’Exposition.

La Section devrait alors nommer la Commission des techniciens chargée d’étudier un programme pour l’unification des méthodes et des instruments, Commission qui devrait avoir un caractère permanent.

L’importance de cette Commission est fondamentale. Elle devra probablement se diviser en 4 sections:

- Physique de la mer.
- Chimie de la mer.
- Lithologie et Géographie physique de la mer.
- Biologie marine.
Cette Commission, dont pourraient aussi faire partie des experts, qui ne sont pas présents à la réunion de Prague, devrait être convoquée à l'occasion de l'Exposition, tandis qu'en attendant, elle pourrait prendre des accords par correspondance. Votre Bureau Central pourrait faire les démarches nécessaires.

**

Une autre Commission qui doit être reconstituée pour pouvoir fonctionner d'une manière permanente est la Commission internationale des marées. La Présidence a reçu des désignations pour cette Commission, qui vous seront soumises. On propose que la Commission des marées soit divisée en trois sections: pour l'étude des marées de l'atmosphère, pour l'étude des marées océaniques, pour l'étude des marées terrestres; si nous pouvions choisir un ou deux rapporteurs permanents pour chacun de ces trois groupes de problèmes, nous pouvons dire d'avoir donné à l'étude des marées une organisation complète et rationnelle, tandis que le Bureau Central vous proposera, ensuite, la publication d'un Bulletin annuel destiné exclusivement aux recherches sur les marées.

Un travail important en cours, par notre Bureau Central, est celui du Vocabulaire, du Manuel et de l'Encyclopédie océanographiques, un travail complexe qui ne rencontre pas peu de difficultés. J'aurai l'honneur de vous communiquer, dans la prochaine séance, un rapport spécial à ce propos, et de vous soumettre des propositions concrètes.

Un autre champ d'activité de notre Bureau Central fut celui de la préparation de la liste des océanographes, dont deux brochures ont déjà été publiées et dont on distribuera prochainement la troisième et dernière.

Une autre publication que j'ai l'honneur de vous soumettre est la liste des Instituts scientifiques s'occupant de l'étude de la mer, publication qui est encore provisoire, mais qui, nous l'espérons, pourra paraître au complet, bientôt, dans une deuxième édition.

Inutile de dire que ces publications présentent de grandes difficultés et demandent une grande patience, mais elles sont certainement de grand intérêt pour l'organisation rationnelle des recherches océanographiques.
En ce moment le Bureau Central est en train de recueillir le matériel pour une publication importante, contenant le texte de tous les traités et conventions internationaux en vigueur, stipulés par les différents pays, se référant à la navigation et à la pêche, et qui contiennent des dispositions concernant l'Océanographie. Presque toutes les Institutions interpellées ont répondu, en envoyant le texte des traités et des conventions intéressant leur pays et on peut dire que la publication sera presque complète.

Notre Bureau Central s'occupe en outre de donner à la publication du Bulletin un caractère périodique et d'y résumer brièvement l'activité des différents pays au sujet des recherches oceano-graphiques. Dans ce but on propose à la Section de publier un Bulletin annuel contenant une résumé des croisières exécutées pour l'étude de la mer par les différents pays, et un Bulletin annuel résumant les recherches maritimes de tous les pays ; publication qui sera confiée à la Commission internationale des marées.

Enfin, dans un troisième Bulletin annuel on prévoit la publication de rapports et de notes intéressant l'oceanographie, présentés par les membres de la Section.

Je dois observer que la proposition de publier annuellement un Bulletin des croisières exécutées dans les différents pays a été accueillie avec la plus grande sympathie et que déjà une quantité considérable de matériel se trouve auprès du Bureau Central, pour une publication spéciale de 1924 à 1927.

Enfin, une tâche très importante pour la Section est celle de publier la Bibliographie générale de l'oceanographie, d'année en année.

Nous nous sommes mis d'accord, à ce propos, avec la Commission internationale de la Méditerranée, qui est intéressée à la publication de la Bibliographie méditerranéenne.

Nous sommes sur le point de nous entendre aussi avec le Conseil international pour l'exploration de la mer, de Copenhague ; une Commission spéciale, nommée à cette fin, se réunira prochainement.

Plus de 3000 fiches ont été classées. Et pour répondre au désir exprimé par la Présidence du Conseil international de Co-
penhague, nous avons attendu, avant de commencer la publication de la Bibliographie, qu’une importante question de principe ait été d’abord décidée. Il s’agit, en effet, d’établir la classification que l’on devrait adopter de préférence, pour la Bibliographie océanographique. Il résulte d’une enquête minutieuse qui a été faite dans des milieux divers, qu’il serait préférable d’adopter la classification décimale ; mais, à toutes fins utiles, comme il s’agit d’une question d’importance fondamentale, je vous propose de bien vouloir nommer, à ce sujet, une Commission spéciale.

De cette façon le programme vaste, mais, précis, qui devrait être développé, graduellement, par le Bureau central, est arrêté.

Nous prions la Section de vouloir bien se prononcer sur le programme en question.

Nous espérons que notre Section aussi pourra effectivement devenir encore plus, un organe de coordination entre les institutions océanographiques des différents pays et contribuer, ainsi au progrès de la science et à la solution des importants problèmes économiques liés à l’étude de la mer.

**

M. Le Danois traduit ensuite en anglais le rapport du Secrétaire.

M. Pichot, au nom de la Section, remercie vivement le Secrétaire du travail important qu’il a exécuté avec d’aussi bons résultats pour l’organisation de la Section.

Le Président met en discussion le rapport du Secrétaire.

Après discussion, le président résume et met aux voix les diverses propositions.

La Section doit exprimer son avis sur les points suivants :

1) si l’Exposition des instruments et des méthodes doit se tenir à l’occasion d’une grande Exposition internationale ;

2) si l’on doit tenir en même temps un Congrès international d’Océanographie et d’Hydrographie ;

3) si l’on doit demander au Gouvernement espagnol de tenir l’Exposition Océanographique pendant l’Exposition de Séville.

Ces trois propositions sont approuvées.

Le Président soumet ensuite au vote la proposition de nommer une Commission de techniciens pour préparer le programme dans le but d’obtenir l’unification des méthodes et des instruments.
Cette proposition est également approuvée.

M. Knudsen propose de confier à une Commission, formée de trois membres, outre le Président et le Secrétaire, la mission de préparer, à cet effet, des propositions concrètes qui seront soumises à l'approbation de la Section à la prochaine Séance. La proposition est approuvée.

On continue la discussion du rapport du Secrétaire à propos de la Commission des Marées.

Le Président résume la discussion de la façon suivante.

On propose la réorganisation de la Commission des Marées, destinée à fonctionner comme Commission permanente.

La proposition, mise aux voix, est approuvée.

Après discussion, la Commission permanente des Marées est constituée comme suit:

Président — Prof. H. Lamb.

Vice-Président — M. E. Fichot.

Secrétaire — Prof. J. Proudman.

Membres — H. M. Marmer.

R. Vercelli.

R. Witting.

S. Ogura.

A. Defant.

H. Thorade.

R. Sterneck.

Le délégué du Bureau Hydrographique international de Monaco.

Le délégué de la Section internationale de Géodésie.

On décide enfin de diviser la Commission des Marées en 3 Sections, et de nommer pour chacune d'elles un rapporteur permanent.

Section des Marées atmosphériques — Rapporteur: Prof. S. Chapman.

Section des Marées océanographiques — Rapporteur: Dr. A. T. Doodson.

Section des Marées terrestres — Rapporteur: M. Lambert.
En continuant la discussion du rapport du Secrétaire, le Président soumet à la Section les propositions suivantes, contenues dans le rapport:

1) publier un Bulletin annuel sur les croisières exécutées par les différents pays;
2) publier un Bulletin annuel spécial pour la Commission des Marées;
3) nommer une Commission pour préparer la classification des arguments de l'océanographie, pour la Bibliographie internationale.

Mises aux voix, ces propositions sont approuvées.

Le Président soumet au vote, dans son ensemble, le programme de travail du Bureau central de la Section, tracé par le Secrétaire dans son rapport.

Le programme ainsi que le rapport sont approuvés à l'unanimité.

Le Président propose, en son nom et au nom de quelques Membres de la Section, le Prof. Schmidt comme Vice-Président.
Cette proposition est approuvée à l'unanimité.
La date de la prochaine Séance est fixée au 8 septembre, à 10 heures.
La Séance est levée à 19 hs. 1/2.
II.

DEUXIÈME SéANCE PLÉNIÈRE DE LA SECTION

(8 septembre)

La seconde Séance plénière est ouverte à 16 hs., President M. Odon de Buen, Secrétaire M. Magrini.

L'ordre du jour de la Séance est le suivant :

ORDRE DU JOUR

1) Rapport de la Commission des Marées.
2) Rapport de la Commission de l'Atlantique.
3) Rapport des autres Commissions (de la Méditerranée, etc.).
5) Nomination de la Commission permanente de techniciens pour l'unification des méthodes et des instruments.
6) Nomination de la Commission pour la classification des arguments de la Bibliographie océanographique.
7) Rapport administratif du Secrétaire.
8) Bilan.
9) Proposition pour la désignation des thèmes spéciaux à discuter à la prochaine réunion et pour la nomination des rapporteurs.
10) Approbation de la liste des Institutions et des personnalités admises à l'échange des publications.
11) Résumé des délibérations prises par la Section.

**

Sont présents les Délégués suivants : Caballero y Lastres, Cook, De Buen Rafael, Fichot, Giral, Holmberg, Knudsen, Kwanji Suda, Mancini, Matthews, Pallucchini, Picotti, Proudman, Sanchez, Takamadate, van Everdingen, Vercelli.

**

Le Président salue d'abord les nouveaux délégués, qui assistent pour la première fois à la Réunion de la Section et se félicite de voir que de nouveaux pays y sont représentés.
M. Holmberg, délégué de l'Argentine, remercie le Président pour ses paroles de bienvenue et l'infore que la science argentine est anxieuse de coopérer aux travaux océanographiques internationaux.

Quoique la contribution apportée jusqu'à ce jour par l'Argentine ait été modeste il y a pourtant dans ce pays des personnalités éminentes qui dédient leur activité à l'étude de la faune marine ; il y a, auprès du Ministère de l'Agriculture, un Bureau de la Pêche, qui participe aux travaux océanographiques ; l'Académie des Sciences et surtout la Commission océanographique argentine s'occupent aussi de recherches océanographiques ; la Commission océanographique argentine a installé une Station biologique à Mar del Plata et prépare des travaux intéressants. Il serait à désirer que le maître de l'océanographie prétent leur concours aux savants argentins.

COMMISSION DES MARÉES

Le Président donne ensuite la parole au Secrétaire de la Commission des Marées, M. le Prof. Proudman, qui lit son rapport et les procès-verbaux des deux réunions tenues par la Commission, le 6 septembre à 10 h. et le même jour à 15 h.

Report of Secretary of Tidal Committee

Since the meeting of the Union at Madrid, the Secretary of the Committee has given a considerable amount of attention to the Vocabulary on Oceanography which is being prepared by the Section. At the request of the Secretary of the Section and in collaboration with the British Hydrographer he supplied translations from French into English and gave English definitions of many oceanographical terms. These terms include all those used in work on Tides and it is proposed that all references to tidal terms in the Vocabulary should receive the consideration of the Tidal Committee before their final adoption by the Section.

The Secretary assisted in obtaining information for the Section's list of Oceanographers. He has also supplied a certain amount of miscellaneous information as to tidal records and constants required by individuals engaged on research.

At the meeting of the Section at Madrid it was decided that
this Committee should prepare for publication reports on the progress of research. For the preparation of these reports the Secretary proposes the appointment by the Section of a small permanent Committee consisting of representatives of the countries most actively engaged on tidal research, together with a nominee of the Section of Geodesy. As a preliminary to these reports the Secretary has prepared a draft of a Bibliography of publications on ocean tides issued since 1910, grouped under the various subdivisions of the subject. This draft he wishes to submit to the permanent Tidal Committee so that additions and other corrections may be made with a view to the Bibliography being published.

Report of Meeting of Tidal Committee
(held on Sept. 6th 1927 at 10 h.)

Present: M. Fichot (Vice-president, in the chair), M. Proutman (Secretary), MM Knudsen, Lambert, Mancini, Matthews, Suda and Vercelli.

1. The Vice-president expressed the regrets of the Committee at the inability of the President (Prof. Lamb) to attend.

2. The Secretary reported the desire of Prof. Lamb to resign the Presidency of the Committee which he had held since the creation of the Union. It was agreed to ask the Section of Oceanography to appoint Prof. Lamb as Honorary President of the Committee and M. Fichot as President of the Committee.

3. It was agreed to recommend to the Section the substitution of the name of H. Rüschelbach for that of H. Thorade as a member of the permanent Committee on oceanic tides.

4. The Secretary read the following report:
 a) The suggestion in the Secretary’s report regarding the Vocabulary of the Section was supported and it was agreed to recommend to the Section the course indicated.
 b) The Secretary submitted his draft of the Bibliography on oceanic tides and various modifications of arrangement were suggested. The Secretary undertook to submit the Bibliography, with the suggested modifications, for the consideration of the permanent Committee on oceanic tides.
 c) It was decided that the permanent Committee should undertake the collection and publication of information regarding the various national services for continuously recording sea-level. The
information required includes list of stations, the types of record kept, the dates of these records and the names and addresses of the authorities responsible for their custody.

d) It was agreed to leave to the President and Secretary recommendations regarding the Budget of the Committee.

Report of Meeting of Tidal Committee
(held on Sept. 6th 1927 at 15 h.)

Present: M. Fichot (Vice-president, in the chair), M. Proudman (Secretary), MM. Gifuentes, Van Everdingen, Knudsen, Kolacner, Lambert, Pallucchini, Stagg, Suda and Verecelli.

1. The report of the meeting held at 10 h. on the same day was read and confirmed.

2. The constitution of the permanent Committee on oceanic tides was again under consideration and it was agreed to suggest to the Section the omission of the delegate of the International Hydrographic Bureau at Monaco.

3. Mr. Lambert referred to the questions regarding mean sea-level raised by the American Geophysical Union, and it was agreed to recommend the appointment of a permanent joint Committee of the Sections of Oceanography and Geodesy. Should such a Committee be appointed the Tidal Committee suggested the names of G. F. Mc Ewen, H. A. Marmer and R. Witting as representatives of the Section of Oceanography.

4. Mr. Pallucchini read a communication on "Vitesses des courants dans le canal-port de Lido à Venise", and the Vice-president conveyed to Mr. Pallucchini the thanks of the Committee.

5. The Secretary read a communication on "The determination of earth-tides by means of water-tides in narrow seas", and the Vice-president conveyed to the Secretary the thanks of the Committee.

6. The Vice-president read the resolutions passed at Madrid on the recommendation of the Joint Tidal Committee and reviewed the action since taken and progress made in furtherance of these resolutions.

M. Fichot soumet à la Section une proposition pour l'étude d'un phénomène qui, à son avis, présente un très grand intérêt au point de vue géophysique.
Il propose la constitution d'une Commission permanente mixte, empruntée aux Sections d'Océanographie, de Météorologie et de Sismographie, pour réunir la documentation et les études concernant la question des raz-de-marée.

La proposition est approuvée.

Le Président met aux voix les propositions de la Commission des Marées et les modifications à faire à sa constitution, modifications qui ont été suggérées par la Commission même. M. Pichot explique que des techniciens appartenant à des pays qui n'ont pas encore adhéré à l'Union ont été compris dans la Commission. Ils seront considérés membres de la Commission dès que l'adhésion de leur pays sera obtenue.

La Section décide aussi que l'étude des Marées fluviales doit être attribuée à la Section internationale d'Hydrologie scientifique.

**

**

COMMISSION DE L' ATLANTIQUE

Le Président donne la parole au Secrétaire de la Commission de l'Atlantique pour la lecture de son rapport.

Le Secrétaire lit le procès-verbal de la Séance tenue par la Commission de l'Atlantique le 3 septembre, avec l'ordre du jour suivant:

* Rapport du Secrétaire général.
* Nomination d'un Délégué devant appartenir à la Commission pour l'unification des méthodes et instruments employés en Océanographie.
* Questions diverses.

Procès-verbal de la Réunion de la Commission de l' Atlantique, qui a eu lieu le 3 septembre à 16 h.

La Séance est ouverte à 16 heures sous la Présidence de Mr. le Dr. le Danois. Sont présents M. Knudsen, Délégué du Danemark ; MM. Odón de Buen et Raphaël de Buen, Délégués de l'Espagne ; Mr. Ed. le Danois, Délégué de la France ; Mr Matthews, Délégué de la Grande Bretagne ; MM. Mancini, Picotti et Vercelli, Délégués de l'Italie.

Le Président communique à l'Assemblée les regrets de Mr. le Prof. Joubin, Président de la Commission, de ne pas pouvoir assister à cette Séance.
Le Secrétaire général lit le Rapport de la Commission. Le Président au nom des Délégués félicite le secrétaire général pour l'intérêt qu'il a prêté au développement de la Commission et propose aussi de féliciter le gouvernement espagnol pour la création d'un laboratoire aux îles Canaries (assentiment).

Le Secrétaire général propose dans son Rapport que l'on demande aux différentes Commissions ou Comités atlantiques internationaux la désignation de Délégués qui, coopérant dans les travaux de la Commission de l'Atlantique, en permettraient le développement. En tenant compte de cette suggestion le Président en fait la proposition, et il est approuvé à l'unanimité, la désignation comme Délégués de Mr. le Dr. J. Schmidt, Président du Comité du Nord Atlantique et MM. Ed. le Danois et R. de Buen, Président et vice-président du Comité du Plateau Continental Atlantique dans le "Conseil international pour l'exploration de la mer", et de Mr. Huntsman, Secrétaire général de la "North American Fishery Investigations". Il est également décidé de demander à la Commission internationale ibéro-américaine, sitôt qu'elle sera organisée, la désignation d'un Délégué.

Mr. le Prof. Knudsen fait savoir qu'il a été chargé par le Dr. Schmidt de communique à l'Assemblée son regret de n'avoir pu venir à Prague, et lui offre d'envoyer à la Commission de l'Atlantique toutes les données nécessaires sur les travaux du Comité du Nord Atlantique, dont il est le Président.

Après une échange d'idées la Commission décide de proposer comme Membres devant appartenir à la Commission pour l'unification des méthodes et des instruments employés en Océanographie, MM. Huntsman, Matthews et Schmidt.

Le Secrétaire fait savoir a MM. les Délégués qu'il n'a pas proposé un plan de travaux à accomplir parce que la Commission se trouve encore en période d'organisation et il est indispensable, avant tout, d'établir les relations nécessaires avec les Comités et de constituer la Commission océanographique ibéro-américaine.

Le Prof. Knudsen demande au Président et au Secrétaire général de continuer leur propagande active pour arriver à la constitution de la Commission internationale ibéro-américaine et pour faire de sorte que cette commission développe, sitôt qu'elle sera créé, l'activité nécessaire pour pouvoir arriver à la connaissance de l'océan Atlantique.

La Séance est levée à 17 heures 15 minutes.
Commission de l’Océan Atlantique. — Rapport préliminaire

Deux questions d’un grand intérêt sont comprises dans le Rapport définitif de la Commission de l’océan Atlantique, qui doit bientôt être publié : le développement acquis par la Commission et les travaux publiés sur l’Atlantique et les croisières accomplies en 1924, 1925 et 1926.

En ce qui concerne le développement de la Commission j’ai le plaisir et l’honneur de pouvoir communiquer que le Ministère Espagnol des affaires étrangères a entrepris les démarches diplomatiques nécessaires pour pouvoir arriver à la constitution, dans l’Amérique d’origine ibérique, d’une grande Commission océanographique qui, tout en conservant une certaine indépendance, collaborera activement dans les travaux et les buts de la Section d’Océanographie de l’Union géodésique et géophysique.

Le Dr. Le Danois ayant donné sa démission, j’ai eu l’honneur d’être nommé Secrétaire général, sûrement parce que la Commission a considéré que par l’égalité de langue et l’intensité des relations intellectuelles avec l’Amérique d’origine ibérique, je pouvais réaliser facilement les démarches nécessaires pour la constitution d’un groupement océanographique dans les Républiques du Centre et du Sud de l’Amérique.

Etant donné que pour le développement de la Commission de l’Atlantique la constitution de cette Commission américaine est indispensable, j’ai dédié mon activité principalement sur cette question et je me suis mis immédiatement en relation avec M. le Dr. Pedro C. Sanchez, Délégué du Mexique dans la dernière réunion de Madrid, pour voir si leur gouvernement pourrait prendre
l'initiative et convoquer une réunion de délégués. Le Dr. Sanchez, après de longues démarches, a répondu que le Mexique, à cause de diverses circonstances, ne pourrait pas s'occuper du problème et alors, pour pouvoir apporter à cette réunion de Prague des nouvelles favorables, je me suis adressé au Ministère espagnol des affaires étrangeres qui, après avoir étudié la question a communiqué, le 28 avril dernier, qu'il adresserait une lettre circulaire à tous les Représentants de l'Espagne dans les Républiques de langue espagnole et portugaise afin d'inviter les gouvernements des différents Pays à désigner des Délégués qui, avec les pouvoirs nécessaires, pourraient, dans une réunion, signer un accord constituant une Commission océanographique Iberico-américaine.

Le projet du Ministère espagnol des affaires étrangeres, est encore plus vaste que le projet appuyé par la Section, sous la proposition de Mr. le Dr. Le Danois, parce que l'on désire non seulement réunir dans la Commission les Pays Ibéro-américains qui ont de côtes sur l'Atlantique, mais aussi ceux qui ont des côtes seulement sur le Pacifique. Naturellement le Portugal et l'Espagne, vont appartenir à cette Commission.

Indépendamment de l'action officielle je me suis adressé aux Sociétés savantes et aux spécialistes ibéro-américains pour leur demander d'appuyer l'idée de constituer la Commission océanographique et j'ai déjà reçu quelque lettres me communiquant que certaines Sociétés ont pris des accords dans le sens indiqué. Il faut espérer que vers la fin de cette année, ou dans le courant de l'année prochaine, sera déjà constituée la Commission océanographique Ibero-américaine, qui coopèrera activement non seulement dans la Commission de l'Atlantique, mais aussi dans celle du Pacifique.

Dans le Rapport définitif de la Commission figure une liste des travaux réalisés et publiés sur l'Atlantique en 1924-26 et un résumé des croisières accomplies pendant la même période. Pour avoir les renseignements nécessaires je me suis adressé aux Centres scientifiques de tous les Pays atlantiques et j'ai reçu des reponses avec des indications qui offrent un grand intérêt, et souvent avec l'envoi de quelques publications, avec lesquelles j'ai pu commencer à constituer une bibliothèque de la Commission.

L'activité océanographique et de biologie maritime dans l'Atlantique est arrivée à un développement énorme grâce aux travaux réalisés par le "Conseil international pour l'exploration de la mer", par le "North American Fishery Investigations", par le "Ice
Patrol service in the North Atlantic Ocean, par les services et les centres scientifiques des différents Pays et par le travail de savants spécialistes. Cette énorme activité oblige à considérer le Rapport définitif comme incomplet, mais malgré tout il faut espérer qu'il prétera aux savants des pays atlantiques des services importants, en leur offrant un bref résumé d'une grande partie de l'activité scientifique, concernant l'océan Atlantique, pendant les trois dernières années.

Je dois aussi signaler que l'Espagne se prépare à augmenter sa collaboration dans l'étude de l'océan Atlantique grâce à la création d'un nouveau laboratoire aux îles Canaries. Ce laboratoire commencera à fonctionner l'année prochaine et offrira l'hospitalité et les moyens nécessaires pour leurs travaux aux savants de tous les Pays. En même temps le nouveau laboratoire accomplira l'étude océanographique et biologique de la région.

Je crois nécessaire de développer l'action de la Commission de l'Atlantique d'augmenter les relations qui existent entre elle et les différentes Commissions qui s'occupent de l'étude de l'Océan Atlantique, comme les Comités Atlantiques du "Conseil international pour l'exploration de la mer", le "North American Fishery Investigations", le "Ice Patrol Service in the North Atlantic Ocean", et les autres Commissions existantes ou qui peuvent être créées dans l'avenir.

Dans ce but je crois utile de proposer que l'on demande aux différentes Commissions ou Comités s'occupant de l'étude de l'océan Atlantique, la désignation d'un Délégué qui pourrait collaborer dans les travaux de notre Commission et auquel ou pourrait demander de rédiger un Rapport annuel sur l'activité scientifique de la Commission par laquelle il aurait été nommé. Ce rapport, publié dans le Bulletin de la Section d'Océanographie, permettrait aux Membres de la Commission de l'Atlantique la connaissance des travaux accomplis dans cet océan.

Le Président propose de comprendre au nombre des membres de la Commission de l'Atlantique, les Délégués, présents à la Séance, qui appartiennent aux États américains du Sud et pas encore membres de la Commission.

La proposition est approuvée et M. Holmberg, pour l'Argentine et M. Sanchez, pour le Mexique, sont admis à faire partie de la Commission.
Le Président met en discussion le rapport et les propositions de la Commission.
Le rapport et les propositions sont approuvées.

M. Fichot soumet à la Section deux résumés, court mais intéressant, relatif aux deux méthodes de sondage, par chocs et détonations et par ultrasons.
Les deux résumés seront publiés dans les Annexes.

COMMISSION DU PACIFIQUE

Le Président donne la parole au Secrétaire pour qu’il rapporte sur la Commission du Pacifique.
Le Secrétaire lit la communication envoyée par son Président, M. Littlehales, et présente le Bulletin N° 10 dans lequel sont publiés in extenso les rapports envoyés par la Commission.
M. Caballero y Lastres s’exprime dans les termes suivants au sujet du Courant de Humboldt et sur l’importance d’une étude systématique de ce courant :

Depuis 1802 que Humboldt renseigna les Sociétés Scientifiques de l’Europe sur l’existence du Courant qui porte le nom de Courant froid de Humboldt ou du Péron on a travaillé très peu pour fixer ses changements de direction, profondeur, température et vitesses selon les époques de l’année.
En 1857 Arago s’est occupé aussi de ce Courant et parmi les professionnels du Péron je dois mentionner l’astronome Faz Soldan et les Capitaines García y García et Stiglich.
La vitesse du Courant qui pour longtemps se fixa à un tiers de mille par heure, a eu des variations sensibles.
J’ai pu constater dans mes voyages le long de la Côte du
Pérou que le courant est à présent de 24 et quelques fois plus de 30 milles par 24 heures.

Messieurs Drachsel et Pettersson, membres du Bureau Central International pour l’exploitation de la Mer ont consacré un paragraphe au courant de Humboldt, disant qu’il a pris une direction plus à l'Ouest, ce qui fait que le chaud Courant côtier El Niño a étendu ses eaux plus au Sud produisant un changement de climat et une chute de pluie excessive, suivie d'innondations désastreuses dans des régions terrestres anparavant sèches.

Il faut reconnaître aussi l’important travail de l’Amiral W. S. Cressley, l’éméllent Président de la dernière Conférence Hydrographique International de Monaco, lequel comme Directeur du Bureau Hydrographique de Washington a contribué d’une façon remarquable à l’étude de la température du Courant de Humboldt.

C’est moi qui ai proposé à la Conférence de Monaco de faire une étude spéciale des courants océaniques, mais la Conférence a décidé que cette question faisait partie du travail propre de chaque Service Hydrographique, pris individuellement, sans tenir compte que l’étude des courants soit au contraire un problème plutôt international qu’un problème national, et qu’une action efficace pour cette étude est limitée à un nombre restreint de Services Hydrographiques.

L’illustre Amiral Niblack, Président actuel du Bureau Hydrographique International a appuyé la question soulevée en mai à la Conférence de Monaco, dans la Publication Spéciale n° 19 Soumise à la Réunion de Prague, et je me permets d’attirer l’attention des membres de la Section d’Océanographie sur l’important travail de l’Amiral Niblack.

Les travaux des messieurs Murphy et Heilner de décembre 1924 à mars 1925 pour le Musée Américain d'Histoire Naturelle ont été particulièrement remarquables mais il reste beaucoup à faire pour l’étude complète du Courant de Humboldt et des différents phénomènes auxquels ont peut attribuer une action chimique comme conséquence, soit d’éruptions volcaniques sous-marines soit pour le choc de courants de diverses températures, qui se produisent principalement dans la Côte du Pérou.

Je me réfère au phénomène connu sous le nom de “Aguaye”, o “Painto”, comme l’appellent les anglais et qui se manifeste par un changement dans la couleur de l’eau et une odeur caracté-
ristique. La peinture blanche de bateaux devient grise et une quantité abondante de poissons tués sont jetés à la plage.

Le Capitaine Stiglich a fait une importante étude sur ce phénomène. J'espère bien ôter avoir quelques exemplaires de son travail pour le mettre à disposition du Comité et je demande sa publication dans le Bulletin.

Je pense que notre section devrait favoriser les travaux de cette nature en nommant des Délégués dans les divers endroits où il y a à étudier quelque phénomène qui ait des relations avec l'Océanographie et puisque le Capitaine Stiglich est spécialisé dans l'étude des phénomènes qui se produisent au long de la Côte du Pérou je propose sa nomination officielle comme Délégué de la Section d'Océanographie du Pérou.

Les propositions de M. Caballero y Lastres sont approuvées et on décide de les transmettre à la Commission du Pacifique.

M. Van Everdingen fait observer que la Commission du Pacifique, étant donnée la grande étendue de sa tâche, a décidé de concentrer tous ses efforts pour l'étude de questions bien définies.

Le Président croit que l'on pourrait demander au Gouvernement du Pérou s'il veut bien organiser l'étude du Courant de Humboldt.

La proposition est approuvée.

COMMISSION DE LA MEDITERRANÉE

Le Président donne la parole au Secrétaire de la Commission internationale de la Méditerranée pour qu'il rapporte sur les travaux que cette Commission a accomplis.

M. Le Danais, Secrétaire Général ayant été obligé de s'absenter, c'est M. Rafael De Buen qui lit le rapport.

Il rappelle la réunion plénière de la Commission, qui a eu lieu à Venise le 16 juillet 1926, et, choisies parmi les plus importantes, les décisions suivantes qui y avaient été prises :

1° — La Conference a pris note de la participation officielle du Gouvernement Roumain.

2° — La Conference a pris connaissance des rapports relatifs aux travaux exécutés par les différents pays, en 1924 et 1915.
3° — Programme d'études et travaux.

a) Travaux particuliers à chaque pays :

Égypte : Étude océanographique en Méditerranée Orientale.
Espagne : Étude hydrologique et biologique de la région du détroit de Gibraltar.
France : Étude hydrographique et biologique sur la Côte d'Algérie.
Grèce : Par suite de l'absence de délégué, le programme n'a pu être déterminé, mais pourra être indiqué ultérieurement.
Italie : Étude monographique de la lagune de Venise.
Monaco : Observations océanographiques entre Monaco et la Corse.
Roumanie : Par suite de l'absence de délégués, le programme des travaux n'a pu être déterminé, mais pourra être indiqué ultérieurement.
Tunisie : Étude hydrologique et biologique des côtes tunisiennes et des lacs salés de la Régence - Biologie du Bar.

b) Travaux faits en participation par plusieurs pays :

Étude de la biologie de la langouste en Méditerranée.
Étude faunistique des îles de la Méditerranée Occidentale, et en particulier des races locales d'animaux utiles.
Italie - Roumanie : Continuation des recherches océanographiques dans les détroits de Constantinople, avec extention en Mer Noire et en Mer Egée.

4° — La Commission Internationale pour l'exploration scientifique de la Méditerranée a prié les gouvernements des états adhérents de prendre en considération les vœux suivants :

a) Organisation d'un Service Météorologique maritime, tant sur les côtes qu'à la mer, dont l'exécution sera confiée aux Bureaux météorologiques nationaux, sur les indications du Comité météorologique international.

b) Désignation de membres devant faire partie d'une Commission internationale chargée de l'étude des marées en Méditerranée.

c) Envoi des données marégraphiques recueillies par les Services nationaux au Bureau de la nouvelle Commission Internationale des Marées de la Méditerranée.

d) Désignation de délégués devant faire partie d'une Com-
mission Internationale chargée de la préparation d'instructions nautiques internationales pour la Méditerranée (Portolani).

e) Détermination des mesures hygiéniques à prendre pour l'exercice de la pêche des éponges à l'aide du scaphandre.

Le Président donne la parole au Secrétaire pour le Rapport sur la préparation du Vocabulaire international océanographique, du Manuel international pour les recherches scientifiques à la mer et de l'Encyclopédie océanographique.

Le Secrétaire lit le rapport suivant :

Comme on le sait, on a confié au Bureau Central la préparation d'un Vocabulaire international océanographique, d'un Manuel international pour les recherches scientifiques à la mer et d'une Encyclopédie océanographique.

Je donne ci-après un compte rendu du travail fait pour ces trois publications et vous présenterai aussi quelques propositions dans l'espoir que vous voudrez bien les approuver.

VOCABULAIRE OCÉANOGRAPHIQUE

Jusqu'à présent, la partie de ce Vocabulaire se rapportant aux langues anglaise, espagnole, française, italienne, avec les définitions relatives, a été préparé.

On n'a pas encore pu obtenir la partie allemande.

Il vaudrait peut-être mieux, en attendant, de publier une édition du texte du Vocabulaire dans ces quatre langues, sans les gravures. Le membres de la Section pourraient ainsi faire leurs observations et proposer éventuellement d'autres mots. Ceci entraînerait, naturellement, des dépenses qui, pourtant, ne seraient pas inutiles. On continuera, en attendant, à faire les démarches nécessaires pour la préparation du texte allemand et dans les autres langues. La publication provisoire facilitera peut-être ces démarches.

J'ai partant l'honneur de vous proposer que le Bureau central soit autorisé à publier dans une édition provisoire le texte du Vocabulaire qui est déjà préparé en langues anglaise, espagnole, française et italienne.
Comme vous le savez, c'est le regretté Prince de Monaco qui proposa et voulut la publication du Manuel pour les recherches océanographiques à la mer. En sa qualité de Président de la Section d'Océanographie et de la Commission internationale de la Méditerranée, il exprima le vœu que les deux Institutions se mettent d'accord pour organiser ce travail qu'il estimait de très grande importance pour le progrès de la science océanographique.

La proposition du Prince de Monaco fut approuvée par la Section, sous les conditions suivantes :

Le Manuel devra être édité en 3 volumes.

Le premier volume contiendra les sujets suivants :
1) Généralités et tableaux numériques.
2) Notes historiques.
3) Hydrographie.
4) Morphologie.
5) Lithologie.

Le deuxième volume contiendra :
1) Météorologie marine.
2) Physique (acoustique, optique, thermique).
3) Ondes.
4) Marées.
5) Courants.

Le troisième volume contiendra :
1) Chimie.
2) Biologie.

Le texte du premier volume est entièrement prêt. Il n'a toutefois pas encore été publié pour deux raisons, la première de caractère technique, l'autre de caractère financier.

Avant de publier le Manuel on a cru nécessaire d'être bien d'accord sur la nomenclature des termes employés et d'attendre que le Vocabulaire, ou la plupart des termes sont définis, soit d'abord publié.
En second lieu, notre Bilan fut réduit, on peut dire, de moitié, par suite de la baisse du franc français. Cela nous empêcha de prendre un engagement financier aussi important comme la publication du Manuel.

Loing de nuire, ce retard nous fut profitable, car entre temps une idée s’est développée, qui est destinée à avoir une influence très importante sur le progrès scientifique de l’Océanographie: il s’agit de tenter l’unification des méthodes de recherche et, si possible, la standardisation des instruments. Le Manuel international pourra être, ainsi, la consécration des résultats de cette tentative.

En effet, vous avez déjà approuvé l’organisation d’une Exposition internationale d’instruments océanographiques et la convocation d’une Commission qualifiée pour l’unification des méthodes et des instruments. Les décisions de cette Commission, qui seront prises dans les meilleures conditions, en ayant sous les yeux presque tous les instruments employés dans les différents pays, serviront de base à la préparation du Manuel, de sorte qu’il n’aura pas seulement une simple valeur d’information, mais il sera comme un texte officiel des différentes Commissions océanographiques réunies, qui ont leurs délégués dans la Commission susmentionnée des techniciens.

En raison de ce qui précède je vous propose de considérer le Manuel, dont on peut, en attendant, continuer à préparer quelque parties, comme le texte dans lequel seront publiés, pour l’usage pratique, les décisions et les suggestions des Commissions des techniciens que vous devrez nommer au cours de cette réunion.

Encyclopédie océanographique

En attendant on pourrait procéder à la publication de l’Encyclopédie océanographique. À ce propos je me permets de vous soumettre quelques propositions, qui sont le résultat d’une étude de la question; étude exécutée, par votre mandat, par le Bureau Central.

Le Bureau propose que l’Encyclopédie soit publiée sous forme d’une série de monographies, comprenant tous les arguments les plus importants de l’Océanographie en fascicules séparés, dont un par argument.

De cette façon la publication d’un fascicule n’est pas subordonnée à la publication de l’autre, et on a la possibilité de
les réunir, ensuite, en volumes, dans l’ordre établi, avec les différents index de coordination.

Pour l’argument “Marées”, par exemple on devrait préparer trois monographies :

Une sur les théories des Marées ;
Une sur les observations et le calcul des Marées et la troisième la prédiction des Marées etc.

Si vous acceptez cette proposition, le Bureau central préparera une première liste de ces monographies qui sera envoyée à tous les délégués de la Section d’Océanographie, avec prière de bien vouloir la retourner munies de leurs propositions éventuelles et surtout de la désignation des personnes qu’ils jugent qualifiées pour préparer les différentes monographies. En certains cas particuliers il ne serait pas mauvais que le même argument soit traité par deux personnes différents. Il va sans dire que le travail de ces rapporteurs sera rémunéré, bien que modestement, en proportion de nos ressources, malheureusement très limitées.

Dès que la proposition sera acceptée, le Bureau Central assumera la charge de vous faire parvenir, prochainement, la première liste des arguments proposés.

Le Président met en discussion les propositions contenues dans le rapport.

Ces propositions sont approuvées.

Le Président demande à M. Tanakadate de participer à la préparation du Vocabulaire, pour le japonais; à M. Van Envendingen, pour le hollandais; à M. Knudsen, pour l’allemand.

Les trois délégués acceptent les propositions.

M. Tanakadate présente la recommandation suivante :

RECOMMENDATION

It is recommended in oceanographical computations, to use 980 cm/°/s as the practical mean value of gravity as in Bjerknes’ Tables.

Motive

1. The mean value of gravity in customary use is that at 45° of latitude. This value varies according to different reductions, and
is likely to vary further as observations increase. It has already
given rise to unnecessary complications in certain cases.

2. For cases when refined reductions are required, small aux-
iliary tables are provided, giving corrections to reduce different
quantities involving gravity, to any local value.

3. The value 980 cm/ ss practically agrees with the mean value
of gravity taken with respect to the surface of the earth, which is
979.8 cm/ ss, and therefore it is a more rational value to be used
than the value at 45° which is the mean value taken along the arc
of meridian.

La recommandation est acceptée.

Le Président communique que la Commission pour désigner
les techniciens qui doivent étudier la question de l’unification des
méthodes et des instruments de l’Oceanographie est constituée par
MM. Knudsen, Matthews et Magrini.

Les propositions de la Commission sont les suivantes:

COMMISSION PERMANENTE POUR L’UNIFICATION DES MÉTHODES ET
DES INSTRUMENTS DE L’OCEANOGRAPHIE.

Physique.

 prof. Giovanni Magrini.

M. Marti, ing. hydrographe.

Donald F. Matthews.

George Francis Mc. Ewen.

Suda Kwanji.

Rolf Witting.

Polytechnische Leereanstalt. Köbenhavn.
Allégaten 33. Bergen.
Ufficio centrale internazionale d’Oceanografiadie
Strà (Venezia).
13 Rue de l’Université.
Paris.

Hydrographic Department.
Admiralty. London.
University. La Jolla. (California).
Imperial Marine Observatory. Kobe (Japan).
Havsforskningsinstitutet.
Helsingfors (Finlande).
Chimie.

President - prof. José Girál.

Membres - prof. H. Damianovich.
prof. Martin Knüdse.
Donald F. Matthews.
prof. Mario Picotti.

Lithologie.

President - prof. L. W. Collot.

Membres - J. O. Borley.
prof. Rafael De Buen.

Dr. Naomasa Jamasaki.

Martès.

President - Bag. Fichot.

Membres - A. T. Doodson
Walter D. Lambert.
J. Proudman.
Shinkiti Ogura.
prof. Francesco Vercelli.

Direccion general de pesca.
Acalà 31. Madrid.
Prof. de Fisico-quimico.
Universidad Nacional.
Buenos Aires.
Polytechnische Leereans-
talt. København.
Hydrographic Department.
Admiralty. London.
Istituto geofisico. Passeggio
S. Andrea 1. Trieste.

Université. Institut de Geo-
logie. Génève.
Director of Fishery In-
vestigation. Lowestoft
(6. B.).
Instituto espagnol d'ocen-
nografia. Acalà 31.
Madrid.
University. Tokio.

Chef du Service Hydro-
graphique de la Ma-
rine. 13 Rue de l'Uni-
University. Liverpool.
U. S. Coast and Geodetic
Tidal Institute. University.
Liverpool.
Hydrographic Department
of Japanese Navy.
Tokyo.
Istituto geofisico. Passeg-
gio S. Andrea 1. Trieste.
Rolf Witting.

Hydrographie.
President - H. P. Douglas.
Membres - Ernesto Caballero y Lastres.
Canepa Juan.
Ern. Fichot.
George Littlehales.
Com. Renzo Mancini.
Kwanji Suda.

Hydrographie Department.
Admiralty. London.
Havsforskningsinstitutet.
Helsingfors (Finlande).

Buenos Aires.
Imperial Marine Observatory. Kobe (Japan).

Biologie.
President - on propose de confier la nomination à la Présidence.
Membres - Asano T.
H. B. Bigelow.
De Buen Fernando.
prof. Raffaele Iassel.
dr. E. Le Danois.
B. S. Russell.
prof. J. Schmidt.

Museum of Comparative Zoology. Cambridge (Mass.).
Direction general de pesca.
Ministry of Agriculture and Fisheries. 43 Parliament Street. London.
Carlsberg Laboratorium. Valby, Köbenhavn.
La Commission suggère aussi de comprendre dans le groupe de la Physique un délégué de la Preussische Kommission für Wissenschaft. Untersuchungen, et dans celui de la Chimie, un délégué de l’Institut für Meereskunde.

Les propositions sont approuvées.

**

Le Dr. Holmberg justifie son absence à la Séance précédente. Il propose d’étudier l’influence sur le climat de l’Argentine du déplacement des glaces sur la mer de Weddel et vers le Nord. Le problème n’a pas seulement une importance locale, mais générale.

Pour ce qui a trait au Vocabulaire, il prie que l’on demande l’avis de la Commission océanographique argentine. Il offre la collaboration des spécialistes argentina tant pour la préparation de l’Encyclopédie que pour la Commission de l’unification des méthodes.

La proposition du Dr. Holmberg concernant l’étude du déplacement des glaces polaires est approuvée.

Après un échange d’idées avec les Membres de la Section, le Président propose que la Commission pour la classification des arguments de la Bibliographie océanographique, soit constituée de la façon suivante :

MM. De Buen Rafael
Knudsen
Le Danois
Magrini
Proudman
Russel

La proposition est approuvée.

Le Président donne la parole au Secrétaire pour qu’il rapporte sur la gestion administrative de la Section.

Le Président communique que les documents justificatifs des dépenses, sont à la disposition des délégués.

Le Secrétaire lit son Rapport.
RÉSUMÉ DES COMPTES JUSQU' AU 31 MARS 1927. — RAPPORT FINANCIER DU SÉCRÉTAIRE.

Le Budget approuvé dans la Réunion plénière de Madrid, en octobre 1924, à l'occasion de la deuxième Assemblée Générale de l’Union pour la période de 1924-25, 1925-26, 1926-27, est le suivant :

Budget annuel de la Section du 1er avril au 31 mars.

Dépenses :

1. Service d’interprètes, sténographes, daétylographes pendant les Réunions de la Section et du Comité exécutif ... Frs. 1.000.—
2. Dépenses d’impression et de publication du Bulletin de la Section ... 4.500.—
3. Constitution de la Bibliothèque Centrale - Préparation des fiches alphabétiques et analytiques ... 3.000.—
4. Préparations des fiches pour le Bulletin bibliographique et le service de traduction ... 3.500.—
5. Publication du Bulletin bibliographique ... 3.000.—
6. Service d’échange de publications entre les différents pays adhérents ... 500.—
7. Frais postaux et télégraphiques ... 700.—
8. Service de daétylographie, archive et correspondance - indemnité à la personne mise à la disposition du Secrétaire ... 1.500.—
9. Préparation du Manuel International et du Vocabulaire ... 7.000.—
10. Commission des Marées ... 500.—

Total Frs. 25.000.—

Ce Budget a été établi sur la base des Frs. 25.000.— à notre disposition par an. Mais la diminution considérable de la valeur du franc français a réduit, pour ainsi dire, cette somme à la moitié, ce qui nous a obligé de renoncer à quelques initiatives et à retarder
surtout la préparation du Manuel international et du Vocabulaire de l’Océanographie.

Je rapporterai tout d’abord sur le compte financier relatif aux trois années ayant terminé le 31 mars 1927. Comme on sait, tous les comptes de l’Union et par conséquent ceux des Sections se clôturaient le 31 mars de chaque année.

Les recettes sont les suivantes :

Recettes réalisées du 1er avril 1924 au 31 mars 1927.

<table>
<thead>
<tr>
<th>Description</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somme en caisse au 1er avril 1924 (1)</td>
<td>Frs. 22.081.60</td>
</tr>
<tr>
<td>Somme versée par l’Union le 15 janvier 1925</td>
<td>19.245</td>
</tr>
<tr>
<td>le 22 septembre 1925</td>
<td>15.000</td>
</tr>
<tr>
<td>le 20 janvier 1926</td>
<td>4.480</td>
</tr>
<tr>
<td>le 28 décembre 1926</td>
<td>25.480</td>
</tr>
<tr>
<td></td>
<td>Frs. 86.286.60</td>
</tr>
<tr>
<td>Intérêt sur les fonds déposés au Crédit Lyonnais de Paris</td>
<td>213.50</td>
</tr>
<tr>
<td></td>
<td>Frs. 86.500.10</td>
</tr>
</tbody>
</table>

Les dépenses étaient faites presque entièrement en lires italiennes et le montant des prélèvements faits, réduits en lires italiennes est le suivant :

1. Prélèvement de Frs. 10.000 Octobre 1924 à 120% Lit. 12.000
2. " " " 10.000 Septembre " " " 115% " 11.500
3. " " " 20.000 Janvier 1926 " 91% " 18.200
4. " " " 15.000 Janvier 1927 " 88% " 12.900
5. " " " 10.000 Mars " " " 85% " 8.300

Frs. 65.000
Lit. 63.000

Les dépenses sont celles spécifiées dans le compte-rendu de la page suivante.

(1) Voir le Bulletin N. 5, Réunion plénière de la Section à Madrid.
— Octobre 1924.
Dépenses de la Section du 1er avril 1924 au 31 mars 1927 en livres italiennes

<table>
<thead>
<tr>
<th>Spécification des dépenses</th>
<th>1924-25</th>
<th>1925-26</th>
<th>1926-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Service d'interprètes, sténographes et daeytographes...</td>
<td>1,582</td>
<td>—</td>
<td>764.20</td>
</tr>
<tr>
<td>et daeytographes pendant les Réunions de la Section et du Comité...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exécutif...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Dépenses d'impression et de publication du Bulletin de la Section</td>
<td>3,717.50</td>
<td>3,743.20</td>
<td>18,179.15</td>
</tr>
<tr>
<td>3. Constituion de la Bibliothèque Centrale - préparation des fiches...</td>
<td>4,864.60</td>
<td>3,553.50</td>
<td>527.70</td>
</tr>
<tr>
<td>alphabétiques et analytiques...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Préparation des fiches pour le Bulletin...</td>
<td>4,083.40</td>
<td>3,200.20</td>
<td>3,500.20</td>
</tr>
<tr>
<td>bibliographique et le service de traduction...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Publication du Bulletin bibliographique</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. Service d'échange de publications entre les différents pays...</td>
<td>625.20</td>
<td>715.20</td>
<td>1,027.20</td>
</tr>
<tr>
<td>adhérents...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Frais postaux et télégraphiques...</td>
<td>800.20</td>
<td>935.20</td>
<td>1,820.20</td>
</tr>
<tr>
<td>8. Service de daeytographie, archive et correspondance...</td>
<td>4,000.20</td>
<td>4,000.20</td>
<td>4,063.10</td>
</tr>
<tr>
<td>indemnité à la personne mise à la disposition du Secrétaire...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Commission des Marées</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Total Lit. 13,672.50 13,346.70 29,780.15

En résumé:

Dépenses du 1er avril 1924 au 31 mars 1927.

Du 1er avril 1924 au 31 mars 1925 Lit. 19,672.50
Du 1er avril 1925 au 31 mars 1926 Lit. 13,146.70
Du 1er avril 1926 au 31 mars 1927 Lit. 29,780.15

Lit. 62,599.35

Les recettes étant de Frs. 86,500.10 et les dépenses de Frs. 65,000.—, il restait déposé un solde de Frs. 21,500.10 (1) au 31 mars 1927 et en caisse du Bureau Central Lit. 400.65.

(1) Dépôt engagé pour la publication du Manuel e de la Bibliographie oceanographique. Une somme parfaitement égale est aussi déposée pour la même raison par la Commission internationale de la Méditerranée.
La Section, en outre, avait au 31 mars 1927 un crédit auprès de l'Union de Frs. 25.480.— de sorte que la Section disposait au 31 mars 1927 de la somme de Frs. 46.980.10 et de Lit. 400.85. Ces sommes étaient toutefois engagées en grande partie pour les publications en cours.

Propositions pour le Bilan de 1926 à 1930.

Comme on sait, l'Assemblée générale a ratifié le principe que le payement des contributions des différents pays adhérents soient dès maintenant faites en francs or, au lieu de francs papier.

Il est à prévoir que quelques pays continueront à faire leurs payements en francs français papier, mais il est préférable de préparer le bilan, sans autre, en francs or, en laissant une marge suffisante pour les réductions causées par ce motif.

Bilan annuel proposé pour la période du 1er avril au 31 mars 1930.

1. Frais divers pendant les réunions internationales - Réunion plénière, réunion du Comité exécutif, des Commissions, etc. Frs. or. : 400.—

2. Frais de publication

3. Bibliothèque Centrale

4. Préparation des fiches bibliographiques

5. Service d'échange des publications

6. Frais de poste

7. Fonctionnement du Bureau Central

8. Commission internationale des Marchés

9. Préparation des publications

10. Dépenses imprévues

Total Frs. or. : 9.300.—

La somme assignée par l'Union à notre Section pour la période du 1er avril 1927 au 31 mars 1930, est de francs français papier 28.480. Les différents pays doivent dès maintenant faire leurs contributions en francs or pour la somme payée jusqu'à présent, réduite au tiers. Après la systématisation financière, nous devons donc recevoir environ 9.300 francs or. C'est précisément sur cette base qu'à été établi le bilan, que le Bureau Central a l'honneur de vous soumettre pour approbation.
Le Président met aux voix le rapport financier du Secrétaire et le projet de bilan.
Tous deux sont approuvés à l’unanimité.
Le Président se fait l’interprète de la reconnaissance de la Section pour l’activité déployée par le Secrétaire, qui malgré les grandes difficultés financières, a pu mener à terme des initiatives très utiles.
Le Secrétaire remercie.

La Section approuve enfin, après discussion, la proposition de désigner des thèmes spéciaux à discuter à la prochaine réunion.
On charge la Présidence de fixer ces thèmes sur la base de référendums, et de nommer les relateurs.

Le Secrétaire soumet à la Section la liste des Institutions et des personnalités que l’on pourrait comprendre pour l’échange des publications.
Après discussion, la liste a été approuvée, avec quelques modifications et adjonctions. — Elle sera publiée.

Résolutions prises par la Section

Avant de lever la Séance, le Président résume enfin les décisions prises par la Section :

La Section a décidé d’organiser une Exposition internationale des instruments océanographiques et hydrographiques, à l’occasion de l’Exposition hispano-américaine, qui aura lieu à Séville au printemps 1929, si le Gouvernement espagnol voudra bien accepter nos propositions.
En même temps sera convoqué un Congrès international de l’Océanographie et d’Hydrographie.

La Section a décidé de publier un Bulletin annuel des croisières exécutées par les différents pays.
La Section a décidé de constituer une Commission internationale permanente des Marées. Elle a nommé :

Président honoraire M. Lamb.
Président M. Fiehot
Secrétaire M. Proudman.

Elle a nommé membres M.M.: Marmer, Vercelli, Witting, Ogura, Défaut, Rauchfellbach, Sternek et un délégué de la Section de Géodésie.

Elle a nommé membres et rapporteurs pour les Marées océaniques Prof. S. Chapman, pour les Marées atmosphériques Dr. A. T. Doodson, pour les Marées terrestres M. Lambert.

La Section a décidé de publier un Bulletin annuel de la Commission internationale des marées.

La Section a nommé vice-président le Prof. Johs. Schmidt de Copenhague.

La Section a approuvé le rapport général du Secrétaire.

La Section a approuvé le rapport administratif du Secrétaire.

La Section a approuvé le Bilan pour le triennat 1927-1930.

On a nommé une Commission permanente de techniciens pour l’unification des méthodes et des instruments de l’Océanographie, qui se réunira à l’occasion du Congrès international d’Océanographie et d’Hydrographie à Séville, pendant l’Exposition qui va être organisée.

On a nommé une Commission pour la classification des arguments de la Bibliographie oceanographique.

On a approuvé la publication provisoire du Vocabulaire international de l’Océanographie, dans les langues anglaise, espagnole, française et italienne.

On a approuvé la publication d’une Encyclopédie oceanographique en fascicules séparés.
On a approuvé de renvoyer la publication du Manuel après la réunion de la Commission des techniciens pour l'unification des méthodes et des instruments.

On a décidé de considérer l'argument des marées dans les fleuves comme une étude rentrant dans la compétence de la Section d'Hydrologie scientifique.

On a approuvé la liste des Instituts et personnalités admises à l'échange des publications.

On a approuvé de désigner des thèmes à discuter dans la prochaine réunion et de nommer des rapporteurs généraux.

Le Président communique que, conformément aux décisions prises, les deux propositions suivantes seront adressées à l'Assemblée Générale de l'Union :

La Section a décidé de prier l'Assemblée Générale de l'Union de bien vouloir décider la constitution d'une Commission mixte, avec les Sections de Volcanologie et de Sismologie, pour l'étude des raz-de-marée.

La Section a décidé de prier l'Assemblée Générale de l'Union de bien vouloir décider la constitution d'une Commission mixte avec la Section de Météorologie, pour l'étude de l'influence des glaces polaires sur le climat, surtout dans l'émisphère Sud.

Aucun des Membres n'ayant demandé la parole, le Président déclare que les travaux de l'Assemblée de Prague, de la Section d'Océanographie, sont clôturés, et lève la séance à 19 hs. 1/2.
The Importance from a Geophysical Point of View of a Knowledge of the tides in the Open Sea.

BY WALTER D. LAMBERT
Mathematician, U. S. Coast and Geodetic Survey

INTRODUCTION.

Although the nature and magnitude of the tide-producing forces are well understood, even the ablest mathematicians have been unable by their combined efforts to predict the times and heights of the tides from theory alone. The most complex cases treated by them are but crude approximations to the realities of nature. Our knowledge of tides and our prediction of them for the purposes of the navigator rest primarily upon observation. This observation is confined almost entirely to the shore. Our knowledge of tides in the open sea rests upon rather uncertain inference; different investigators have drawn very different sets of cotidal lines. It is usually true that a knowledge of the facts in any given case precedes and stimulates the development of a theory to account for the facts, but here there are few facts to stimulate the theorist. A knowledge of the tides in midocean would be evidently desirable, simply as an aid in the development of an adequate theory of the tides, even if no other oceanographic purpose were served thereby. The purpose of this note, however, is not to insist on a knowledge of tides in midocean from the purely oceanographic point of view, but rather to emphasize the desirability of this knowledge for two geophysical purposes that are not primarily oceanographic at all, namely: 1) the problem of the earth tides and 2) the problem of tidal friction and the apparent secular acceleration of the moon. Furthermore one way is suggested in which some knowledge of tides at sea could be gained.

I.

EARTH TIDES.

Earth tides are generally observed as small changes in the direction of the plumb line with respect to the earth's crust. The
apparatus used is either a horizontal pendulum or a very long water level, the minute oscillations of which are read by an interferometer apparatus. The purpose of a study of the earth tides is a determination of the elastic properties of the earth and a study of the possible effects of local geologic conditions on the yielding of the crust.

It is obvious that the varying load of tidal water in the oceans affects the direction of the plumb line (as referred to the earth's crust) in two ways, first by the direct gravitational attraction of the water and second by the tilting of the crust due to the variable load of water on it. These two effects, which, for distinction, may be called the secondary effects, are in general of about the same order of magnitude and at earth-tide stations near the coast they often overpower the primary effects of the earth tides proper. For instance at Pasadena, California, the secondary effects are about two and one-half times as great as the earth tides proper (1); at a station in Korea (2) the secondary effects are about four times as great.

These stations are near sea coasts where large tides are known to prevail, and it is natural to expect these secondary effects to be large, but it is not always realized that they may be inconveniently large even at great distances from the coast. The early observations in the Baltic region showed a marked discrepancy between the apparent rigidities of the earth along the meridian and along the prime vertical. This discrepancy is almost certainly due to the uncorrected secondary effects of the tides, and to the effects of the tides in the Atlantic Ocean chiefly, rather than of the comparatively small tides in the nearer Baltic region.

A rather striking instance of the same sort is afforded by the comparison of the mean effective rigidity of the earth deduced from observations at Williams Bay, Wisconsin (3) with the rigidity deduced from observations at Potsdam (4). Both sets of observations

(1) Communication from Prof. W. W. Whitney of the California Institute of Technology. Results will probably be published shortly, but at this writing have not appeared.
were excellent on the experimental side; observations at Williams Bay were made with the Michelson-Gale water-level and interferometer apparatus, those at Potsdam with horizontal pendulums. The former were not corrected in any way for the secondary effects of the oceanic tides and the mean effective rigidity of the earth deduced from them was about that of steel. Owing to a peculiar combination of natural conditions Schwedler was able, by the exercise of considerable ingenuity, to correct indirectly the observations at Potsdam, approximately at least, for the secondary effects of the oceanic tides; the rigidity he deduced was about twice that of steel. An attempt was made by the writer of this note to estimate by direct means the neglected secondary effect of the oceanic tides on the Williams Bay observations. Harris’s coördal maps were used. Williams Bay is some 1200 kilometers from the coast; nevertheless it appeared that the effect of the oceanic tides was to diminish the apparent rigidity and if allowance were made for them, the rigidity would be increased to something approximating to Schwedler’s value, namely, about twice that of steel. The calculations were somewhat rough and have not been pushed to a definitive conclusion.

It is probably true that there is no place on earth so remote from the sea that observations of earth tides taken with an apparatus as accurate as that of Michelson and Gale will not need correction for the secondary effects of earth tides in order to take full advantage of the accuracy of the apparatus. Of course it might happen that at a particular place and for a particular tidal component the correction would by chance come out zero, but it would probably not be zero even for a place not far removed nor for another tidal component.

II.

TIDAL FRICTION.

As is well known, the apparent secular acceleration of the moon exceeds the amount computed by the principles of celestial mechanics. The excess is plausibly attributed, not to a real acceleration of the moon, but to a slight secular slowing down of the earth’s rotation about its axis, thus introducing a systematic error into our time-keeping system, which is based on the assumption of the absolute uniformity of the earth’s rotation. This introduces an apparent
acceleration into the motion of the moon with reference to the fixed stars.

This slowing down of the earth’s rotation is attributed to tidal friction, either in the tides of the body of the earth or in the oceanic tides. Taylor and Jeffreys, applying improved methods of estimating viscosity, have concluded that, on the basis of available data as to tidal currents, there is approximately enough friction available in the oceanic tides alone to account for enough slowing down of the earth’s rotation to produce the required amount of apparent secular acceleration in the moon’s motion. This friction is almost entirely in the shallow seas. The friction in great areas of deep ocean is almost negligible. This would suggest that there is but little friction in the bodily earth tides and there is evidence of quite another sort to confirm this view.

There is, however, another method of estimating the oceanic tidal friction that depends, not on the currents, but on the ranges and establishments (or in terms of harmonic constants, on the amplitudes and epochs) of the tide. Since the data from tidal currents are very uncertain, it is desirable to apply this other method as a check, but this requires a knowledge of the tides in the open sea. To illustrate the uncertainty of the method based on currents, Jeffreys (1) found 2.2×10^{19} ergs per second as the rate of dissipation of energy due to the spring tides, whereas Heiskanen (2), using practically the same data found 3.6×10^{19} ergs per second. Heiskanen also provided the means for estimating the dissipation of energy by means of ranges and establishments. Using Sternbeck’s cotidal lines he found by the second method a rate of dissipation at spring tides of 2.0×10^{19} ergs per second. He did not recognize it as a second method, however, but treated it as a correction to be subtracted from his previous result, leaving 1.6×10^{19} ergs per second. It is, however, in fact another and a quite independent means of computing the same thing. The error lay not in the algebraic sign of the result but rather on a wrong interpretation of the correct sign.

(1) The Earth, its Origin, History and Physical Constitution. Cambridge, Eng., 1924, p. 281. This gives a convenient summary of the work of Taylor and Jeffreys.

Regarding some necessary reductions from spring tides to mean values more will be said later. The discrepancies may look rather large, but to any one conversant with the uncertainty of the data, they are not at all surprising. Although the agreement of the two methods, rough as it is, proves nothing definitely as to the correctness of Sterneck's cotidal lines for the open ocean, on which the second method was based, it at least creates some presumption in their favor for it would be quite possible to draw a set of arbitrary cotidal lines that would give an absurdly exaggerated value to the dissipation or even a negative value.

Two other considerations are worth mentioning. One is that the proof of the formulas used by Heiskanen can be obtained in quite a different way and one that appeals more strongly to one's physical intuitions. In the case of tides in the body of the earth we have the obvious fact that, if because of viscosity the longer axis of the tidal ellipsoid DC (Fig. 1) is not directly under the moon m,

![Fig. 1. - (from Jeffreys' The Earth, etc.)](image)

but in advance of it, as it must be under the combined effect of viscosity and inertia, there is an obvious couple tending to retard the rotation of the earth and to accelerate the motion of the moon. In the case of the ocean tide we do not have a regular tidal surface, but an irregularly undulating surface, the form of which at any time could be deduced from the cotidal maps. We can consider this irregular surface analyzed into spherical harmonic terms. It can be shown that none of these terms contribute anything to the couple that retards the earth and accelerates the moon except harmonic terms of the second degree, that is, terms representing the effective tidal ellipsoid for the oceanic tides, an ellipsoid analogous to the tidal ellipsoid for the body tides. There is, however, one difference. In the case of body tides the dimensions of the tidal ellipsoid and its phase difference with respect to the moon are constant, at least for the simplified case shown in Fig. 1, which shows the moon moving
in the equator. In the case of the oceanic tides, however, because of the presence of the continents, the dimensions and phase difference of the effective tidal ellipsoid for the oceanic tides vary from hour to hour, and we must take the mean value over a lunar day. This mean value is the one that Heiskanen, following Taylor, obtains by quite a different course of reasoning.

The other remark has to do with the retardation due to the solar tides. From a study of ancient eclipses and a comparison of them with modern observations astronomers have deduced the relative portions of the apparent lunar acceleration due respectively to the friction of the solar and lunar tides. If the solar tides were made up of oscillations exactly like those of the lunar tides except for period and amplitude, it might be expected that the retarding effect would be in the square of the ratio of the solar to the lunar tidal forces, namely, \((0.46)^2 = 0.21 \) approximately, but since there is evidence that the solar oscillations are of somewhat different character from the lunar ones, and since the solar establishment (or in terms of harmonic constants, the solar epoch) differs from the lunar epoch (1) and since the epoch is a very essential element in the computation of tidal friction, we can not say in advance how the frictional retardation due to the solar tides compares with that due to the lunar tides. It would be instructive to make the computation, even though the available data as to the solar tide might be rather scanty (2). Apparently, however, no possible ratio of the solar to the lunar frictional retardation will fit the astronomical observations now available as these are generally interpreted by astronomers (3).

(1) The solar epoch is usually greater than the lunar, and the difference between the two is proportional to the "age" of the spring or neap tides.

(2) It would probably be necessary in cases where solar harmonic constants are lacking to infer the solar harmonic constants from the lunar ones by means of the ratio of spring and neap ranges and the age of the spring tide.

(3) The observed quantity does not depend merely on the ratio of the amounts of energy dissipated in the solar and lunar tides. For the formula see Jeffreys, *The Earth, its Origin, History and Physical Constitution*, Cambridge (Eng.) 1924, p. 215.
We may recapitulate the results obtained for the average rate of dissipation of energy due to the mean (not the spring) lunar tide as follows:

Jeffreys from ocean currents \(1.1 \times 10^{19}\) ergs per second

Heiskanen from ocean currents using about the same data as Jeffreys \(1.9 \times 10^{19}\)

Heiskanen from amplitudes as reinterpreted and revised by Lambert \(1.0 \times 10^{19}\)

One horsepower is \(7.46 \times 10^7\) ergs per second, so in engineering terms, the dissipation is at the rate of about one and one-half (American) billion \((10^9)\) horsepower. Lambert’s figures involve a few insignificant numerical corrections of Heiskanen’s values, which latter are based on Sterneck’s cotidal lines (1) but no fundamental revision other than the reinterpretation previously mentioned. Lambert’s figures also involve an estimated reduction from spring tide to mean tide and an approximate correction for the yielding of the earth under the varying load of tidal water, the figure, \(1.9 \times 10^{13}\), for the dissipation from ocean currents involves a factor for reducing from spring to mean different from the one used by Heiskanen himself.

It would take too long to go into these matters here, but the writer hopes soon to undertake a thorough discussion of the whole subject of tidal friction by the method of amplitudes and epochs, using not only Sterneck’s cotidal lines but also Harris’s for comparison. He also hopes to make an estimate of the dissipation of energy not only by the solar semidiurnal tides, but also by the diurnal tides, for which latter the cotidal map of Sterneck is available. The formulas and details of the computation would naturally be given somewhat fully.

III.

A POSSIBLE METHOD OF STUDYING TIDES AT SEA.

Several years ago the writer published a note in which the following suggestion was made (1).

"The direct observation of tides at sea is a problem beset with difficulties. To observe tides by means of soundings repeated every hour or so at the same point seems impracticable on account of the great depth to be sounded, rendering an accuracy of a foot or less impracticable, and also on account of the difficulty of recovering the same point. Pressure gauges in one form or another have been suggested, but the instrument that will sustain the load of a thousand fathoms of water and at the same time be sensitive to variations in that load of a foot or so has not yet been devised (2).

"It has occurred to me, however, that the question of tidal oscillations at sea could be approached somewhat differently, namely, by a study of the horizontal oscillations, that is, the tidal currents. In the open sea these tidal currents would, of course, be small, but not always too small to be detected and studied. Given a good knowledge of the tidal currents, the tidal rise and fall could be inferred with fair certainty. The relatively large tidal currents are to be looked for near the nodal lines of the stationary tidal oscillations, and Harris's theory will indicate plausible places in which to look for such nodal lines.

"What has chiefly impressed me with the possibility of measuring tidal currents at sea was the reduction that I made for the late Dr. Harris of observations taken some thirty-five years ago by Lieut. Pillsbury, as he was then, later Rear Admiral Pillsbury. They were not made with the study of tidal currents chiefly in view, but for the exploration of the Gulf Stream. Dr. Harris had them worked over again by more modern methods to see what information about tidal currents could be extracted.

(2) A recording tide gauge for work at sea invented by M. Fayé, a French hydrographic engineer, that is said to have given good results at Dover, England, and in the Thames Estuary, is mentioned in the Observatory, Vol. 45, August 1920, p. 279.
The series were all short, a few days at the most, and some of them did not put in evidence an unquestionable tidal current, but a number of them did. A plotting of these latter showed that the results of the approximate harmonic analyses that were made could not be far from the truth. The velocities found ranged in general from 0.05 to 0.3 knot. It may be of interest to remark that the times and directions of the current were in general agreement with Harris's theory of stationary tidal oscillations. The observations, of course, were made before this theory was formulated, but they were not reduced for tidal purposes till some time after the theory was published, so that they serve as a partial confirmation of it.

If an expedition were sent out to determine tidal currents at sea in somewhat the way here suggested, it would have to occupy one spot for several days, or preferably longer. While the vessel remained on the spot for current observations there would be an excellent opportunity for other kinds of scientific observations, magnetic, geophysical and biological. The intensity of gravity at sea is a great desideratum in geophysics and as soon as adequate apparatus is devised for the purpose observations of gravity should certainly be made in connection with observations of the currents.

The recent development by Vening Meinesz of a practicable method of observing gravity at sea suggests a further development of the air-castle in the last paragraph of the quotation above. We can imagine a "Mother ship," accompanying a submarine equipped to make gravity observations. The mother ship remains in one vicinity making current observations, while other scientists on board are studying the terrestrial magnetism, the atmospheric electric conditions, the properties of the sea water, and the marine life of the region, the submarine meanwhile being engaged in gravity determinations. After a while mother ship and submarine move on to a new region.

The plan seems to offer many advantages and, in the important matter of expense, involves little more than the combination of separate enterprises already under way or in contemplation.
The Determination of Earth-Tides by means of Water-Tides in Narrow Seas.

By J. Proudman
Tidal Institute, University of Liverpool

1. General.

The following discussion is concerned with the determination of the tidal deformation of the solid earth and not with that of the effective elastic constants of the earth.

We shall denote by:

- \(a \) the radius of the earth,
- \(\Omega \) the angular speed of the earth’s rotation,
- \(g \) the acceleration of gravity on the earth’s surface,
- \(\theta, \phi \) the co-latitude and east longitude of a point of the ocean,
- \(x, y \) Cartesian coordinates of a point of a small sea,
- \(h \) the depth of water below any point of the mean surface,
- \(b \) the breadth of a narrow sea,
- \(A \) the area of a vertical transverse section of a narrow sea,
- \(t \) the time,

- \(\xi_0 \) the elevation of any point of the sea floor,
- \(\xi \) the elevation of the sea-surface relative to the sea-floor,
- \(u, v \) the components of tidal current in the horizontal directions of increasing \(\theta, \phi \) or of \(x, y \),
- \(-g \xi \) the potential of the astronomical tide-generating forces,
- \(-g \xi_0 \) the change in potential due to both earth-tide and water-tide,
- \(c \) the speed of a harmonic motion \(i.e. 2\pi \) period.

The equation of continuity of the water may be written

\[
\frac{1}{a \sin \theta} \left(\frac{\partial}{\partial \theta} (h \sin \theta u) + \frac{\partial}{\partial \phi} (h v) \right) + \frac{\partial \xi}{\partial t} = 0 ,
\]

(1.1)

and the dynamical equations as
\[
\begin{align*}
\frac{\partial u}{\partial t} - 2 \Omega \cos \theta v &= - g \frac{\partial}{\partial \theta} (\xi + \xi_o - \xi_o) \\
\frac{\partial v}{\partial t} + 2 \Omega \cos \theta u &= - g \frac{\partial}{\partial \varphi} (\xi + \xi_o - \xi_o)
\end{align*}
\] (1.2)

on assuming any horizontal motion of the sea-floor to be negligible compared with the tidal current.

Now \(\xi \) is known, so that if we also knew \(\xi, u, v \), the equations would enable us to calculate

\[
\frac{\partial}{\partial \theta} (\xi_o - \xi_o), \quad \frac{\partial}{\partial \varphi} (\xi_o - \xi_o).
\] (1.3)

With very good and complete observations of \(u, v \) over a region of the sea, the equation of continuity might be used (1) to give \(\xi \).

But in the absence of full observational knowledge of actual water-tides over a region we must have recourse to a certain amount of theory. In any case, however, we can only expect to determine the gradients of \(\xi_o - \xi_o \), where \(\xi \) is of the same order as \(\xi \). This makes it impossible to utilise such a region as the North Sea where the gradients of \(\xi \) are very much larger than those of \(\xi \).

2. Narrow Sea.

For an elongated sea such as the Red Sea the transverse currents may be neglected, and \(\xi, \xi_o, \xi, \xi_o \) may be taken as varying linearly across any transverse section. If we measure \(x \) along the medial line of the sea and now let \(u \) denote the mean value of the current at any time over a transverse section, one of the dynamical equations may be written

\[
2 \Omega \cos \theta u = - g \frac{\partial}{\partial y} (\xi + \xi_o - \xi - \xi_o) .
\] (2.1)

In what follows we shall suppose that \(\xi, \xi_o, \xi, \xi_o \) are taken on the medial line of the sea, and the equation of continuity then becomes

\[
\frac{\partial}{\partial x} (\mathcal{A} u) + b \frac{\partial \xi}{\partial t} = 0 ,
\] (2.2)

while the remaining dynamical equation is

$$\frac{\partial u}{\partial t} = -g \frac{\partial}{\partial x} (\zeta + \zeta_0 - \zeta - \xi) \tag{2.3}$$

The dependent variables of equations (2.2) and (2.3) are functions of x and t only.

From a good observational knowledge of the coastal values of ξ, this function may be estimated all along the medial line of the sea and then with one value of u known, all other values of u may be calculated from the equation of continuity (2.2). The dynamical equation (2.3) would then enable us to calculate

$$\frac{\partial}{\partial x} (\zeta_0 - \xi)$$

all along the medial line.

The best site to utilise for this purpose would undoubtedly be the Red Sea. Its great length and small communication with the ocean make ξ of the same order as ξ, while its regular form makes the theory applicable with some confidence. Further, the observational material is already in existence and has even been subjected to harmonic analysis (1). To the present writer and at the present time, it seems that all water-tides those of the Red Sea provide the most promising method of discussing earth-tides.

A. Blondel (2) and A. Defant (3) have discussed the dynamics of the Red Sea tides, without, however, making any allowance for the yielding of the solid earth. Defant’s method may be modified as follows, and for simplicity of exposition we shall suppose that the sea has a single closed end from which x is measured.

For a single harmonic constituent and working with complex motion we may take for the astronomical disturbing forces

$$g \frac{\partial \xi}{\partial x} = F(x)e^{\nu t} \tag{2.4}$$

and if we may neglect the effect of the ocean-tides on the earth-tides we may assume (1)

\[\xi_0 = h_0 \xi, \quad \bar{\xi}_0 = k_0 \bar{\xi}, \]

where \(h_0 \) and \(k_0 \) are constants, possibly complex. We may then construct by numerical integration two pairs of functions of \(x \) only, \(\xi_1, u_1 \) and \(\bar{\xi}_1, \bar{u}_1 \) to satisfy the following conditions and equations

\[\begin{align*}
\frac{\partial}{\partial x} (\Lambda u_1) + i \sigma b \xi_1 &= 0 \\
i \sigma u_1 &= -g \frac{\partial \xi_1}{\partial x} + F(x)
\end{align*} \]

and

\[\begin{align*}
\frac{\partial}{\partial x} (\Lambda u_1) + i \sigma b \bar{\xi}_1 &= 0 \\
i \sigma u_1 &= -g \frac{\partial \bar{\xi}_1}{\partial x}
\end{align*} \]

The general complex solution of the equations (2.2) and (2.3) will then be

\[\begin{align*}
\xi &= \left\{ (1 - h_0 + k_0) \xi_1 + l \xi_0 \mid e^{stm} \right\} \\
u &= \left\{ (1 - h_0 + k_0) u_1 + l u_0 \mid e^{stm} \right\}
\end{align*} \]

where \(l \) is another constant.

The harmonic constants for any two stations will determine the two quantities \(h_0 - k_0 \) and \(l \), and as we know the constants for many more stations we should have a check on the assumptions made.

Sondage par chocs et détonations

On utilise comme source sonore :

des profondeurs de 20 aux profondeurs de 200 mètres, le choc d'un marteau sur la coque du navire,
des profondeurs de 100 aux profondeurs de 1000 mètres, le choc sur l'eau d'une balle de fusil tirée du navire sur la surface de la mer suivant une assez grande incidence,
aux profondeurs supérieures à 1000 mètres, l'explosion au sein de la masse liquide d'une petite charge détonante.

Un caisson en fonte est fixé sur la coque à l'intérieur du bâtiment au moyen de deux barres fixées aux membranes et munies chacune d'une vis d'appui (A). Un bourrelet de caoutchouc forme joint entre la coque et le caisson ; celui-ci est entièrement rempli d'eau et dans ces conditions un microphone sous-marin fixé à l'intérieur reçoit à travers la coque les ondes acoustiques de la mer. L'installation peut être faite sans passage au bassin puisqu'il n'y a pas à percer la coque.

Le microphone de coque est relié à un amplificateur à tubes à vide, installé dans l'abri de navigation (B) et actionnant l'oscillographe inscripteur de l'appareil enregistreur.

Lorsqu'il s'agit seulement de sonder coup par coup ce dernier appareil (C) enregistrer les sondages sur une bande de papier qui se déroule à vitesse constante, la profondeur se déduisant de la longueur de bande déroulée entre les déviations dues au départ de l'onde acoustique et à son écho revenant du fond de la mer (D).

Le déroulement de la bande est obtenu par un mouvement d'horlogerie muni d'un régulateur spécial, que l'on met en marche au moment de faire un sondage ; l'inscription se fait par plume à encrage sur papier glacé (D).

Lorsqu'on cherche au contraire à figurer le profil des profondeurs rencontrées par le navire on utilise l'enregistreur continu (voir sondage par ultra-sons, (G)) et un fusil à déclenchement électrique (B). Le départ du coup est alors provoqué par le contact
électrique de l'enregistreur, et ce dernier juxtapose automatique-ment les sondages successifs effectués, en alignant à l'origine d'une graduation les déviations dûes au départ de l'onde afin que les déviations dûes à l'écho figurent le profil des profondeurs rencontrées par le navire pendant sa route (P).

A — Installation du caisson microphonique par l'intérieur sur la coque du navire
D — Sondages effectués au moyen de l'enregistreur coup par coup
E — Fusil à déclenchement électrique, installé sur sa potence
Reproduction d'un profil de profondeur relevé au moyen de l'ensemble de déclenchement électrique.
Sondage par ultra-sons

L'appareil acoustique utilisé est le quartz piezoelectrique établi par M. Langevin. Cet appareil, qui fonctionne indifféremment comme émetteur ou comme récepteur d'ondes acoustiques à fréquence très élevée (dites ultra-sonores parce que l'oreille ne les perçoit plus), permet pour chaque sondage d'émettre d'abord un train d'ondes très bref, puis de recevoir l'écho de ce train d'ondes revenant du fond de la mer.

Un amplificateur de haute fréquence à tubes à vide, relié au quartz, détecte les oscillations correspondant au départ du train d'ondes et à l'écho ; le phénomène acoustique, devenu alors perceptible à l'oreille, est amplifié une seconde fois par un autre amplificateur (Voir Sondage par Chocs et Détonations, B), qui actionne l'oscillographe inscripteur de l'appareil enregistreur.

Ce dernier appareil (G) enregistre les sondages transversalement à une bande de papier assez large et sans fin, graduée dans la largeur ; il juxtapose automatiquement les sondages successifs effectués, en alignant à l'origine de la graduation les déviations dues au départ du train d'onde, afin que les déviations dues à l'écho figurent le profil des profondeurs rencontrées par le navire pendant sa route.

Le sondage par ultra-sons est utilisé actuellement sans difficultés des profondeurs de 20 aux profondeurs de 200 mètres.
G — Enregistreur continu des sondages
H — Reproductions, à l'échelle 1/6, de graphiques de sondage continu obtenus un moyen du quartz ultra-sonore

A — Graphique tel qu'il sort de l'enregistreur

Ces graphiques proviennent des cahiers d'une Mission Hydrographique opérant sur les côtes d'Algérie-Tunisie. Étant donnée la vitesse des bâtiments pendant le travail, les hauteurs des profils obtenus doivent être généralement considérées comme exagérées 5 fois. Les numéros visibles sur les graphiques sont ceux des stations des positions faites par les navires pendant leur travail. Sur les graphiques H₁ à H₇, le profil des profondeurs a été précisé par un trait blanc pour faciliter le travail de rédaction des sondages sur la carte.

B — Passage du Navire sur une fosse (Golfe de Bougie) (Cas très rare)

C — Passage du Navire sur une arête roucheuse
F — Coupe d'un banc sous-marin comportant une tête rocheuse

(Au voisinage immédiat de cette tête le bâtiment a passé au dessus d'un édifice rocheux dont les différents étages ont donné des échos partiels, l'ensemble des déviations d'écho formant alors un graphique allongé caractéristique. Cas très rare).

G — Passage du navire sur une falaise sous-marine
I — Augmentation de la précision des lectures de profondeurs par emploi du nouvel oscillographe Deprez

I.

Graphiques effectués avec l'ancien oscillographe Abraham

par profondeurs assez grandes

par profondeurs plus petites
I — Augmentation de la précision des lectures de profondeurs par emploi du nouvel oscillographe Deprez

II.
Graphiques effectués avec le nouvel oscillographe Deprez

par profondeurs assez grandes

par profondeurs plus petites
Tidal Committee

Honorary President Prof. H. Lamb.
President M. E. Fichot.
Secretary Prof. J. Proudman.

Rapporteur for Atmospheric Tides Prof. S. Chapman.
Rapporteur for Oceanic Tides Dr. A. T. Doodson.
Rapporteur for Earth-Tides Mr. W. D. Lambert.

Members of permanent Committee for oceanic tides:

H. A. Marmer F. Vercelli
S. Ogura R. Witting
R. Sterneck

The Committee is to have at its disposal an Annual Bulletin, in which it is intended to publish such matter concerning tides as the following:

1. Classified lists of publications.
2. General Surveys of the present state of research in different branches of the subject.
3. Information relating to existing records of observation of sea-level, and national tidal services.

The Secretary will act as Editor of the Bulletin.

The Secretary has prepared a draft of a list of publications on oceanic tides issued since 1910. This he will circulate to the members of the Committee for additions and corrections prior to publication.

The Rapporteur for Oceanic tides will undertake the collection of information relating to records of observation of sea-level.